IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0284.html
   My bibliography  Save this paper

Testing for Weak Instruments in Linear IV Regression

Author

Listed:
  • James H. Stock
  • Motohiro Yogo

Abstract

Weak instruments can produce biased IV estimators and hypothesis tests with large size distortions. But what, precisely, are weak instruments, and how does one detect them in practice? This paper proposes quantitative definitions of weak instruments based on the maximum IV estimator bias, or the maximum Wald test size distortion, when there are multiple endogenous regressors. We tabulate critical values that enable using the first-stage F-statistic (or, when there are multiple endogenous regressors, the Cragg-Donald (1993) statistic) to test whether given instruments are weak. A technical contribution is to justify sequential asymptotic approximations for IV statistics with many weak instruments.

Suggested Citation

  • James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0284
    Note: TWP LS
    as

    Download full text from publisher

    File URL: https://www.nber.org/papers/t0284.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    2. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    3. repec:cup:etheor:v:9:y:1993:i:2:p:222-40 is not listed on IDEAS
    4. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    5. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    6. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    2. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    3. Nam-Hyun Kim & Winfried Pohlmeier, 2015. "A Regularization Approach to Biased Two-Stage Least Squares Estimation," Working Paper series 15-22, Rimini Centre for Economic Analysis.
    4. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    5. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    6. Andreas Pick, 2007. "Financial contagion and tests using instrumental variables," DNB Working Papers 139, Netherlands Central Bank, Research Department.
    7. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    8. Muhammad Qasim, 2024. "A weighted average limited information maximum likelihood estimator," Statistical Papers, Springer, vol. 65(5), pages 2641-2666, July.
    9. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    10. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    11. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    12. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    13. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    14. Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
    15. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    16. John C. Chao & Norman R. Swanson, 2003. "Asymptotic Normality of Single-Equation Estimators for the Case with a Large Number of Weak Instruments," Departmental Working Papers 200312, Rutgers University, Department of Economics.
    17. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    18. Stephen Knowles & P. Dorian Owen, 2010. "Which Institutions are Good for Your Health? The Deep Determinants of Comparative Cross-country Health Status," Journal of Development Studies, Taylor & Francis Journals, vol. 46(4), pages 701-723.
    19. Norman R. Swanson & John C. Chao, 2004. "Estimation and Testing Using Jackknife IV in Heteroskedastic Regressions with Many Weak Instruments," Econometric Society 2004 Far Eastern Meetings 668, Econometric Society.
    20. J. Ginger Meng & Gang Hu & Jushan Bai, 2011. "Olive: A Simple Method For Estimating Betas When Factors Are Measured With Error," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 34(1), pages 27-60, March.

    More about this item

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.