IDEAS home Printed from https://ideas.repec.org/p/lam/wpaper/17-07.html
   My bibliography  Save this paper

Extracting spatial resources under possible regime shift

Author

Listed:
  • Christopher Costello
  • Bruno Nkuiya
  • Nicolas Querou

Abstract

How will countries harvesting mobile renewable resource react to the threat of climate change? We address the non-cooperative exploitation of a migratory renewable resource in the presence of possible regime shift that affects its movement. Motivated by the anticipated effects of climate change, we model a regime shift that will alter the spatial movement patterns of the resource at some point in the future. We develop a stochastic spatial bioeconomic model to address the effects of this class of regime shift on non-cooperative harvest decisions made by decentralized owners such as countries exploiting a migratory fish or other natural resource stock. We find that the threat of a future shift modifies the standard golden rule and may induce more aggressive harvest everywhere, irrespective of whether the owner will be advantaged or disadvantaged by the shift. We also identify conditions under which the threat of regime shift induces owners to reduce harvest rates in advance of the shift. Our analysis suggests that different property rights structures (single ownership vs common property) or heterogenous growth can give rise to previously unexplored incentives and can even reverse conventional wisdom about how countries will react to the threat of environmental change.

Suggested Citation

  • Christopher Costello & Bruno Nkuiya & Nicolas Querou, 2017. "Extracting spatial resources under possible regime shift," Working Papers 17-07, LAMETA, Universtiy of Montpellier.
  • Handle: RePEc:lam:wpaper:17-07
    as

    Download full text from publisher

    File URL: https://www.lameta.univ-montp1.fr/Documents/DR2017-07.pdf
    File Function: First version, 08-2017
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Polasky, Stephen & de Zeeuw, Aart & Wagener, Florian, 2011. "Optimal management with potential regime shifts," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 229-240, September.
    2. Bård Harstad, 2016. "The Dynamics Of Climate Agreements," Journal of the European Economic Association, European Economic Association, vol. 14(3), pages 719-752, June.
    3. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    4. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2015. "Partial enclosure of the commons," Journal of Public Economics, Elsevier, vol. 121(C), pages 69-78.
    5. Jorge García Molinos & Benjamin S. Halpern & David S. Schoeman & Christopher J. Brown & Wolfgang Kiessling & Pippa J. Moore & John M. Pandolfi & Elvira S. Poloczanska & Anthony J. Richardson & Michael, 2016. "Climate velocity and the future global redistribution of marine biodiversity," Nature Climate Change, Nature, vol. 6(1), pages 83-88, January.
    6. Richard Carson & Clive Granger & Jeremy Jackson & Wolfram Schlenker, 2009. "Fisheries Management Under Cyclical Population Dynamics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 379-410, March.
    7. Ren, Bijie & Polasky, Stephen, 2014. "The optimal management of renewable resources under the risk of potential regime shift," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 195-212.
    8. Miller, Steve & Nkuiya, Bruno, 2016. "Coalition formation in fisheries with potential regime shift," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 189-207.
    9. Robert N. Stavins, 2011. "The Problem of the Commons: Still Unsettled after 100 Years," American Economic Review, American Economic Association, vol. 101(1), pages 81-108, February.
    10. Christopher Costello & Stephen Polasky & Andrew Solow, 2001. "Renewable resource management with environmental prediction," Canadian Journal of Economics, Canadian Economics Association, vol. 34(1), pages 196-211, February.
    11. Sakamoto, Hiroaki, 2014. "Dynamic resource management under the risk of regime shifts," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 1-19.
    12. Ulph, Alistair & Ulph, David, 1997. "Global Warming, Irreversibility and Learning," Economic Journal, Royal Economic Society, vol. 107(442), pages 636-650, May.
    13. Calvin Atewamba & Bruno Nkuiya, 2017. "Testing the Assumptions and Predictions of the Hotelling Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(1), pages 169-203, January.
    14. Eli Fenichel & Timothy Richards & David Shanafelt, 2014. "The Control of Invasive Species on Private Property with Neighbor-to-Neighbor Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 231-255, October.
    15. Ute Kapaun & Martin Quaas, 2013. "Does the Optimal Size of a Fish Stock Increase with Environmental Uncertainties?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 293-310, February.
    16. Reed, William J., 1979. "Optimal escapement levels in stochastic and deterministic harvesting models," Journal of Environmental Economics and Management, Elsevier, vol. 6(4), pages 350-363, December.
    17. Kaffine Daniel T & Costello Christopher, 2011. "Unitization of Spatially Connected Renewable Resources," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-31, March.
    18. Alistair Ulph & David Ulph, "undated". "Global Warming, Irreversibility And Learning," ELSE working papers 056, ESRC Centre on Economics Learning and Social Evolution.
    19. Diekert, Florian K., 2017. "Threatening thresholds? The effect of disastrous regime shifts on the non-cooperative use of environmental goods and services," Journal of Public Economics, Elsevier, vol. 147(C), pages 30-49.
    20. May Elsayyad & Florian Morath, 2016. "Technology Transfers For Climate Change," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57, pages 1057-1084, August.
    21. Fesselmeyer, Eric & Santugini, Marc, 2013. "Strategic exploitation of a common resource under environmental risk," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 125-136.
    22. Chris J. Kennedy & Edward B. Barbier, 2013. "Renewable resource management with environmental prediction: the importance of structural specification," Canadian Journal of Economics, Canadian Economics Association, vol. 46(3), pages 1110-1122, August.
    23. Crow White & Christopher Costello, 2014. "Close the High Seas to Fishing?," PLOS Biology, Public Library of Science, vol. 12(3), pages 1-5, March.
    24. Costello, Christopher & Polasky, Stephen, 2008. "Optimal harvesting of stochastic spatial resources," Journal of Environmental Economics and Management, Elsevier, vol. 56(1), pages 1-18, July.
    25. William Nordhaus, 2015. "Climate Clubs: Overcoming Free-Riding in International Climate Policy," American Economic Review, American Economic Association, vol. 105(4), pages 1339-1370, April.
    26. Christopher Costello & Nicolas Querou & Agnès Tomini, 2015. "Partial enclosure of the commons," Post-Print hal-01457323, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabbri, G. & Faggian, S. & Freni, G., 2018. "Spatial resource wars: A two region example," Working Papers 2018-04, Grenoble Applied Economics Laboratory (GAEL).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    2. Jules Selles, 2018. "Fisheries management: what uncertainties matter?," Working Papers hal-01824238, HAL.
    3. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," CEE-M Working Papers hal-03052114, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    4. Nkuiya, Bruno & Diekert, Florian, 2023. "Stochastic growth and regime shift risk in renewable resource management," Ecological Economics, Elsevier, vol. 208(C).
    5. Christopher Costello & Nicolas Querou & Agnès Tomini, 2014. "Spatial concessions with limited tenure," Post-Print hal-01123392, HAL.
    6. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2015. "Partial enclosure of the commons," Journal of Public Economics, Elsevier, vol. 121(C), pages 69-78.
    7. Kelsall, Claudia & Quaas, Martin F. & Quérou, Nicolas, 2023. "Risk aversion in renewable resource harvesting," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    8. Quérou, Nicolas & Tomini, Agnes & Costello, Christopher, 2022. "Limited‐tenure concessions for collective goods," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    9. Bediako, Kwabena & Nkuiya, Bruno, 2022. "Stability of international fisheries agreements under stock growth uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    10. Christopher Costello & Daniel Kaffine, 2018. "Natural Resource Federalism: Preferences Versus Connectivity for Patchy Resources," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 99-126, September.
    11. Dahmouni, Ilyass & Sumaila, Rashid U., 2023. "A dynamic game model for no-take marine reserves," Ecological Modelling, Elsevier, vol. 481(C).
    12. Baggio, Michele & Fackler, Paul L., 2016. "Optimal management with reversible regime shifts," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 124-136.
    13. Miller, Steve & Nkuiya, Bruno, 2016. "Coalition formation in fisheries with potential regime shift," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 189-207.
    14. Diekert, Florian K., 2017. "Threatening thresholds? The effect of disastrous regime shifts on the non-cooperative use of environmental goods and services," Journal of Public Economics, Elsevier, vol. 147(C), pages 30-49.
    15. Wagener, Florian & de Zeeuw, Aart, 2021. "Stable partial cooperation in managing systems with tipping points," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    16. Quaas, Martin F. & van Soest, Daan & Baumgärtner, Stefan, 2013. "Complementarity, impatience, and the resilience of natural-resource-dependent economies," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 15-32.
    17. Johannes Emmerling & Ulrike Kornek & Valentina Bosetti & Kai Lessmann, 2021. "Climate thresholds and heterogeneous regions: Implications for coalition formation," The Review of International Organizations, Springer, vol. 16(2), pages 293-316, April.
    18. Michele Baggio, 2016. "Optimal Fishery Management with Regime Shifts: An Assessment of Harvesting Strategies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 465-492, July.
    19. McGough Bruce & Plantinga Andrew J. & Costello Christopher, 2009. "Optimally Managing a Stochastic Renewable Resource under General Economic Conditions," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 9(1), pages 1-31, December.
    20. Giorgio Fabbri & Silvia Faggian & Giuseppe Freni, 2022. "On competition for spatially distributed resources in networks: an extended version," Working Papers 2022:03, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lam:wpaper:17-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Patricia Modat (email available below). General contact details of provider: https://edirc.repec.org/data/lamplfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.