IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp13430.html
   My bibliography  Save this paper

Bounding Program Benefits When Participation Is Misreported

Author

Listed:
  • Tommasi, Denni

    (University of Bologna)

  • Zhang, Lina

    (University of Amsterdam)

Abstract

In empirical research, measuring correctly the benefits of welfare interventions is incredibly relevant for policymakers as well as academic researchers. Unfortunately, the endogenous program participation is often misreported in survey data and standard instrumental variable techniques are not sufficient to point identify and consistently estimate the effects of interest. In this paper, we focus on the weighted average of local average treatment effects (LATE) and (i) derive a simple relationship between the causal and the identifiable parameter that can be recovered from the observed data, (ii) provide an instrumental variable method to partially identify the heterogeneous treatment effects, (iii) formalize a strategy to combine administrative data on the misclassification probabilities of treated individuals to further tighten the bounds. Finally, we use our method to reassess the benefits of participating to the 401(k) pension plan on savings.

Suggested Citation

  • Tommasi, Denni & Zhang, Lina, 2020. "Bounding Program Benefits When Participation Is Misreported," IZA Discussion Papers 13430, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp13430
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp13430.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brent Kreider, 2010. "Regression Coefficient Identification Decay in The Presence of Infrequent Classification Errors," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1017-1023, November.
    2. Aigner, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," Journal of Econometrics, Elsevier, vol. 1(1), pages 49-59, March.
    3. Melvin Stephens & Takashi Unayama, 2019. "Estimating the Impacts of Program Benefits: Using Instrumental Variables with Underreported and Imputed Data," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 468-475, July.
    4. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    5. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    6. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    7. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    8. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    9. Angrist, Joshua D, 2001. "Estimations of Limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 2-16, January.
    10. Thomas J. Kane & Cecilia Elena Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," NBER Working Papers 7235, National Bureau of Economic Research, Inc.
    11. Frolich, Markus, 2007. "Nonparametric IV estimation of local average treatment effects with covariates," Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
    12. Kreider, Brent & Pepper, John V., 2007. "Disability and Employment: Reevaluating the Evidence in Light of Reporting Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 432-441, June.
    13. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    14. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    15. Bollinger, Christopher R., 1996. "Bounding mean regressions when a binary regressor is mismeasured," Journal of Econometrics, Elsevier, vol. 73(2), pages 387-399, August.
    16. Bruce Meyer & Robert Goerge, 2011. "Errors in Survey Reporting and Imputation and Their Effects on Estimates of Food Stamp Program Participation," Working Papers 11-14, Center for Economic Studies, U.S. Census Bureau.
    17. Brent Kreider & John V. Pepper & Craig Gundersen & Dean Jolliffe, 2012. "Identifying the Effects of SNAP (Food Stamps) on Child Health Outcomes When Participation Is Endogenous and Misreported," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 958-975, September.
    18. Daniel L. Millimet, 2011. "The Elephant in the Corner: A Cautionary Tale about Measurement Error in Treatment Effects Models," Advances in Econometrics, in: Missing Data Methods: Cross-sectional Methods and Applications, pages 1-39, Emerald Group Publishing Limited.
    19. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    21. Hausman, Jerry A. & Newey, Whitney K. & Ichimura, Hidehiko & Powell, James L., 1991. "Identification and estimation of polynomial errors-in-variables models," Journal of Econometrics, Elsevier, vol. 50(3), pages 273-295, December.
    22. Stephen Pudney & Monica Hernandez & Ruth Hancock, 2007. "The welfare cost of means-testing: pensioner participation in income support," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 581-598.
    23. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
    24. Rossella Calvi & Arthur Lewbel & Denni Tommasi, 2022. "LATE With Missing or Mismeasured Treatment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1701-1717, October.
    25. Magne Mogstad & Alexander Torgovitsky & Christopher R. Walters, 2021. "The Causal Interpretation of Two-Stage Least Squares with Multiple Instrumental Variables," American Economic Review, American Economic Association, vol. 111(11), pages 3663-3698, November.
    26. Sonja A. Swanson & Miguel A. Hernán & Matthew Miller & James M. Robins & Thomas S. Richardson, 2018. "Partial Identification of the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary Instruments, Treatments, and Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 933-947, April.
    27. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    28. Xuan Chen & Carlos A. Flores & Alfonso Flores-Lagunes, 2018. "Going beyond LATE: Bounding Average Treatment Effects of Job Corps Training," Journal of Human Resources, University of Wisconsin Press, vol. 53(4), pages 1050-1099.
    29. Andrew Chesher, 2010. "Instrumental Variable Models for Discrete Outcomes," Econometrica, Econometric Society, vol. 78(2), pages 575-601, March.
    30. Tommasi, Denni, 2019. "Control of resources, bargaining power and the demand of food: Evidence from PROGRESA," Journal of Economic Behavior & Organization, Elsevier, vol. 161(C), pages 265-286.
    31. Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Aureo de Paula, 2019. "Inference on Causal and Structural Parameters using Many Moment Inequalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(5), pages 1867-1900.
    32. Jay Bhattacharya & Azeem M. Shaikh & Edward Vytlacil, 2008. "Treatment Effect Bounds under Monotonicity Assumptions: An Application to Swan-Ganz Catheterization," American Economic Review, American Economic Association, vol. 98(2), pages 351-356, May.
    33. Poterba, James M. & Venti, Steven F. & Wise, David A., 1995. "Do 401(k) contributions crowd out other personal saving?," Journal of Public Economics, Elsevier, vol. 58(1), pages 1-32, September.
    34. Black, Dan & Sanders, Seth & Taylor, Lowell, 2003. "Measurement of Higher Education in the Census and Current Population Survey," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 545-554, January.
    35. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    36. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
    37. Meyer, Bruce D. & Mittag, Nikolas & Goerge, Robert M., 2018. "Errors in Survey Reporting and Imputation and Their Effects on Estimates of Food Stamp Program Participation," IZA Discussion Papers 11776, Institute of Labor Economics (IZA).
    38. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    39. Bruce D. Meyer & Wallace K. C. Mok & James X. Sullivan, 2015. "Household Surveys in Crisis," Journal of Economic Perspectives, American Economic Association, vol. 29(4), pages 199-226, Fall.
    40. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    41. Frazis, Harley & Loewenstein, Mark A., 2003. "Estimating linear regressions with mismeasured, possibly endogenous, binary explanatory variables," Journal of Econometrics, Elsevier, vol. 117(1), pages 151-178, November.
    42. Takuya Ura, 2018. "Heterogeneous treatment effects with mismeasured endogenous treatment," Quantitative Economics, Econometric Society, vol. 9(3), pages 1335-1370, November.
    43. Mogstad, Magne & Torgovitsky, Alexander & Walters, Christopher R., 2024. "Policy evaluation with multiple instrumental variables," Journal of Econometrics, Elsevier, vol. 243(1).
    44. Acerenza, Santiago & Ban, Kyunghoon & Kedagni, Desire, 2021. "Marginal Treatment Effects with Misclassified Treatment," ISU General Staff Papers 202106180700001132, Iowa State University, Department of Economics.
    45. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    46. Alan L. Gustman & Thomas Steinmeier & Nahid Tabatabai, 2007. "Imperfect Knowledge of Pension Plan Type," NBER Working Papers 13379, National Bureau of Economic Research, Inc.
    47. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    48. Toru Kitagawa, 2009. "Identification region of the potential outcome distributions under instrument independence," CeMMAP working papers CWP30/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    49. Charles F. Manski & John V. Pepper, 2009. "More on monotone instrumental variables," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 200-216, January.
    50. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.
    51. Chalak, Karim, 2017. "Instrumental Variables Methods With Heterogeneity And Mismeasured Instruments," Econometric Theory, Cambridge University Press, vol. 33(1), pages 69-104, February.
    52. Erich Battistin & Barbara Sianesi, 2011. "Misclassified Treatment Status and Treatment Effects: An Application to Returns to Education in the United Kingdom," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 495-509, May.
    53. AIGNER, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," LIDAM Reprints CORE 130, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    54. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    55. Thomas J. Kane & Cecilia Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," Working Papers 798, Princeton University, Department of Economics, Industrial Relations Section..
    56. Tommasi, Denni & Zhang, Lina, 2022. "Identifying Program Benefits When Participation Is Misreported," IZA Discussion Papers 15427, Institute of Labor Economics (IZA).
    57. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    58. Kosuke Imai & Teppei Yamamoto, 2010. "Causal Inference with Differential Measurement Error: Nonparametric Identification and Sensitivity Analysis," American Journal of Political Science, John Wiley & Sons, vol. 54(2), pages 543-560, April.
    59. Angrist, Joshua D, 2001. "Estimations of Limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 27-28, January.
    60. Klepper, Steven, 1988. "Bounding the effects of measurement error in regressions involving dichotomous variables," Journal of Econometrics, Elsevier, vol. 37(3), pages 343-359, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Acerenza, Santiago & Ban, Kyunghoon & Kedagni, Desire, 2021. "Marginal Treatment Effects with Misclassified Treatment," ISU General Staff Papers 202106180700001132, Iowa State University, Department of Economics.
    2. Santiago Acerenza & Kyunghoon Ban & D'esir'e K'edagni, 2021. "Local Average and Marginal Treatment Effects with a Misclassified Treatment," Papers 2105.00358, arXiv.org, revised Sep 2024.
    3. Akanksha Negi & Digvijay Singh Negi, 2022. "Difference-in-Differences with a Misclassified Treatment," Papers 2208.02412, arXiv.org.
    4. Ha Trong Nguyen & Le, Huong Thu & Blyth, Christopher & Connelly, Luke & Mitrou, Francis, 2024. "Identifying the effects of health insurance coverage on health care use when coverage is misreported and endogenous," GLO Discussion Paper Series 1432, Global Labor Organization (GLO).
    5. Didier Nibbering & Matthijs Oosterveen, 2023. "Instrument-based estimation of full treatment effects with movers," Papers 2306.07018, arXiv.org.
    6. Lina Zhang & David T. Frazier & Don S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Monash Econometrics and Business Statistics Working Papers 34/20, Monash University, Department of Econometrics and Business Statistics.
    7. Evan S. Totty & Thor Watson, 2024. "Privacy Protection and Accuracy: What Do We Know? Do We Know Things?? Let's Find Out!," NBER Chapters, in: Data Privacy Protection and the Conduct of Applied Research: Methods, Approaches and their Consequences, National Bureau of Economic Research, Inc.
    8. Augustine Denteh & D'esir'e K'edagni, 2022. "Misclassification in Difference-in-differences Models," Papers 2207.11890, arXiv.org, revised Jul 2022.
    9. Santiago Acerenza, 2024. "Partial Identification of Marginal Treatment Effects with Discrete Instruments and Misreported Treatment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 74-100, February.
    10. Vitor Possebom, 2021. "Crime and Mismeasured Punishment: Marginal Treatment Effect with Misclassification," Papers 2106.00536, arXiv.org, revised Jul 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    2. Acerenza, Santiago & Ban, Kyunghoon & Kedagni, Desire, 2021. "Marginal Treatment Effects with Misclassified Treatment," ISU General Staff Papers 202106180700001132, Iowa State University, Department of Economics.
    3. Akanksha Negi & Digvijay Singh Negi, 2022. "Difference-in-Differences with a Misclassified Treatment," Papers 2208.02412, arXiv.org.
    4. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    5. Denni Tommasi & Arthur Lewbel & Rossella Calvi, 2017. "LATE with Mismeasured or Misspecified Treatment: An application to Women's Empowerment in India," Working Papers ECARES ECARES 2017-27, ULB -- Universite Libre de Bruxelles.
    6. Battistin, Erich & De Nadai, Michele & Sianesi, Barbara, 2014. "Misreported schooling, multiple measures and returns to educational qualifications," Journal of Econometrics, Elsevier, vol. 181(2), pages 136-150.
    7. Lorenzo Almada & Ian McCarthy & Rusty Tchernis, 2016. "What Can We Learn about the Effects of Food Stamps on Obesity in the Presence of Misreporting?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 997-1017.
    8. Francis J. DiTraglia & Camilo Garcia-Jimeno, 2020. "Identifying the effect of a mis-classified, binary, endogenous regressor," Papers 2011.07272, arXiv.org.
    9. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2022. "Identification Of Regression Models With A Misclassified And Endogenous Binary Regressor," Econometric Theory, Cambridge University Press, vol. 38(6), pages 1117-1139, December.
    10. Steven J. Haider & Melvin Stephens Jr., 2020. "Correcting for Misclassified Binary Regressors Using Instrumental Variables," NBER Working Papers 27797, National Bureau of Economic Research, Inc.
    11. DiTraglia, Francis J. & García-Jimeno, Camilo, 2019. "Identifying the effect of a mis-classified, binary, endogenous regressor," Journal of Econometrics, Elsevier, vol. 209(2), pages 376-390.
    12. Vitor Possebom, 2021. "Crime and Mismeasured Punishment: Marginal Treatment Effect with Misclassification," Papers 2106.00536, arXiv.org, revised Jul 2023.
    13. Wossen, Tesfamicheal & Abay, Kibrom A. & Abdoulaye, Tahirou, 2022. "Misperceiving and misreporting input quality: Implications for input use and productivity," Journal of Development Economics, Elsevier, vol. 157(C).
    14. Battistin, Erich & De Nadai, Michele & Vuri, Daniela, 2017. "Counting rotten apples: Student achievement and score manipulation in Italian elementary Schools," Journal of Econometrics, Elsevier, vol. 200(2), pages 344-362.
    15. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    16. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Third Version," PIER Working Paper Archive 15-040, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 24 Nov 2015.
    17. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    18. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    19. Kyung Min Kang & Robert A. Moffitt, 2019. "The Effect of SNAP and School Food Programs on Food Security, Diet Quality, and Food Spending: Sensitivity to Program Reporting Error," Southern Economic Journal, John Wiley & Sons, vol. 86(1), pages 156-201, July.
    20. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    heterogenous treatment effects; causality; binary treatment; endogenous measurement error; discrete or multiple instruments; weighted average of LATEs; endogeneity; program evaluation;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp13430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.