IDEAS home Printed from https://ideas.repec.org/p/ira/wpaper/201612.html
   My bibliography  Save this paper

“Climate Change Mitigation and the Role of Technologic Change: Impact on selected headline targets of Europe’s 2020 climate and energy package ”

Author

Listed:
  • Germá-Bel

    (Departament of Economic Policy & GiM-IREA, University of Barcelona. Av. Diagonal 696; 08034 Barcelona, Spain.)

  • Stephan Josep

    (Departament of Economic Policy & GiM-IREA, University of Barcelona. Av. Diagonal 696; 08034 Barcelona, Spain.)

Abstract

The European Union launched a set of policies as part of its 2020 climate and energy package aimed at meeting its 20/20/20 headline targets for smart, sustainable and inclusive growth. This paper evaluates how successful new-to-the-market climate change mitigation technologies (CCMT) are in helping EU member states (MS) to reach these goals and, furthermore, whether there are differences between sectors subject to EU-wide polices. To do so, we seek to relate CCMT patent counts to two specific headline targets: (1) achieving 20% of gross final energy consumption from renewables, and (2) achieving a 20% increase in energy efficiency. Our results provide the first ex-post evaluation of the effectiveness of these technologies for combating climate change. Moreover, our sectoral impact assessment points to significant differences in the way in which these technologies contribute to policy goals across sectors.

Suggested Citation

  • Germá-Bel & Stephan Josep, 2016. "“Climate Change Mitigation and the Role of Technologic Change: Impact on selected headline targets of Europe’s 2020 climate and energy package ”," IREA Working Papers 201612, University of Barcelona, Research Institute of Applied Economics, revised Oct 2016.
  • Handle: RePEc:ira:wpaper:201612
    as

    Download full text from publisher

    File URL: https://www.ub.edu/irea/working_papers/2016/201612.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cockburn, Iain & Griliches, Zvi, 1988. "Industry Effects and Appropriability Measures in the Stock Market's Valuation of R&D and Patents," American Economic Review, American Economic Association, vol. 78(2), pages 419-423, May.
    2. Christian Soltmann & Tobias Stucki & Martin Woerter, 2015. "The Impact of Environmentally Friendly Innovations on Value Added," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 457-479, November.
    3. Tiwari, Aviral, 2010. "On the dynamics of energy consumption and employment in public and private sector," MPRA Paper 24076, University Library of Munich, Germany.
    4. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    5. Ivan Haščič & Nick Johnstone & Fleur Watson & Christopher Kaminker, 2010. "Climate Policy and Technological Innovation and Transfer: An Overview of Trends and Recent Empirical Results," OECD Environment Working Papers 30, OECD Publishing.
    6. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    7. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    8. repec:fth:harver:1473 is not listed on IDEAS
    9. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    10. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    11. Sebri, Maamar, 2015. "Use renewables to be cleaner: Meta-analysis of the renewable energy consumption–economic growth nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 657-665.
    12. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    13. Hall, Bronwyn H. & Oriani, Raffaele, 2006. "Does the market value R&D investment by European firms? Evidence from a panel of manufacturing firms in France, Germany, and Italy," International Journal of Industrial Organization, Elsevier, vol. 24(5), pages 971-993, September.
    14. David Popp, 2003. "Pollution control innovations and the Clean Air Act of 1990," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 641-660.
    15. Federico Munari & Raffaele Oriani (ed.), 2011. "The Economic Valuation of Patents," Books, Edward Elgar Publishing, number 13561.
    16. J. Javid, Roxana & Nejat, Ali & Hayhoe, Katharine, 2014. "Selection of CO2 mitigation strategies for road transportation in the United States using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 960-972.
    17. Bel, Germà & Joseph, Stephan, 2015. "Emission abatement: Untangling the impacts of the EU ETS and the economic crisis," Energy Economics, Elsevier, vol. 49(C), pages 531-539.
    18. Frank Asche & Petter Osmundsen & Maria Sandsmark, 2006. "The UK Market for Natural Gas, Oil and Electricity: Are the Prices Decoupled?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 27-40.
    19. Fontini, Fulvio & Pavan, Giulia, 2014. "The European Union Emission Trading System and technological change: The case of the Italian pulp and paper industry," Energy Policy, Elsevier, vol. 68(C), pages 603-607.
    20. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    21. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    22. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2021. "The effect of carbon pricing on technological change for full energy decarbonization: A review of empirical ex‐post evidence," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    2. Rodica-Manuela Gogonea & Simona Ioana Ghita & Andreea Simona Saseanu, 2020. "Biocapacity—Premise of Sustainable Development in the European Space," Sustainability, MDPI, vol. 12(3), pages 1-26, February.
    3. Calise, Francesco & Cappiello, Francesco Liberato & Cartenì, Armando & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2019. "A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 97-114.
    4. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    5. Sobek, Szymon & Werle, Sebastian, 2019. "Solar pyrolysis of waste biomass: Part 1 reactor design," Renewable Energy, Elsevier, vol. 143(C), pages 1939-1948.
    6. Wadim Strielkowski & Elena Volkova & Luidmila Pushkareva & Dalia Streimikiene, 2019. "Innovative Policies for Energy Efficiency and the Use of Renewables in Households," Energies, MDPI, vol. 12(7), pages 1-17, April.
    7. Simona-Vasilica Oprea & Adela Bâra & Adriana Reveiu, 2018. "Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders," Energies, MDPI, vol. 11(1), pages 1-31, January.
    8. Jonek-Kowalska, Izabela, 2022. "Towards the reduction of CO2 emissions. Paths of pro-ecological transformation of energy mixes in European countries with an above-average share of coal in energy consumption," Resources Policy, Elsevier, vol. 77(C).
    9. Hwang, Haejin & Kim, Sunghoon & García, Álvaro González & Kim, Jiyong, 2021. "Global sensitivity analysis for assessing the economic feasibility of renewable energy systems for an off-grid electrified city," Energy, Elsevier, vol. 216(C).
    10. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2022. "On the quality of emission reductions: observed effects of carbon pricing on investments, innovation, and operational shifts. A response to van den Bergh and Savin (2021)," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 733-758, November.
    11. Praene, Jean Philippe & Payet, Mahéva & Bénard-Sora, Fiona, 2018. "Sustainable transition in small island developing states: Assessing the current situation," Utilities Policy, Elsevier, vol. 54(C), pages 86-91.
    12. Monica Aureliana Petcu & Eduard Madalin Dinu & Irina Daniela Cismasu & Raluca Andreea Popescu-Predulescu, 2023. "The Analysis of the Impact of Energy and Environmental Policies of the European Union on the Economic Performance of Companies. Case Study in the Transport Sector," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 362-362, April.
    13. Olga Orynycz & Karol Tucki, 2020. "Technology Management Leading to a Smart System Solution Assuring a Decrease of Energy Consumption in Recreational Facilities," Energies, MDPI, vol. 13(13), pages 1-22, July.
    14. Simona Ioana Ghita & Andreea Simona Saseanu & Rodica-Manuela Gogonea & Catalin-Emilian Huidumac-Petrescu, 2018. "Perspectives of Ecological Footprint in European Context under the Impact of Information Society and Sustainable Development," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    15. Parisi, M.L. & Maranghi, S. & Vesce, L. & Sinicropi, A. & Di Carlo, A. & Basosi, R., 2020. "Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: A long-term scenario approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    16. Georgatzi, Vasiliki V. & Stamboulis, Yeoryios & Vetsikas, Apostolos, 2020. "Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 11-20.
    17. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Wojciech Dybaś, 2019. "Capacity Market Implementation in Poland: Analysis of a Survey on Consequences for the Electricity Market and for Energy Management," Energies, MDPI, vol. 12(5), pages 1-16, March.
    18. Ribeiro, Beatriz Couto & Ferrero, Luciane Graziele Pereira & Bin, Adriana & Blind, Knut, 2023. "Effects of innovation stimuli regulation in the electricity sector: A quantitative study on European countries," Energy Economics, Elsevier, vol. 118(C).
    19. Anna Komarnicka & Anna Murawska, 2021. "Comparison of Consumption and Renewable Sources of Energy in European Union Countries—Sectoral Indicators, Economic Conditions and Environmental Impacts," Energies, MDPI, vol. 14(12), pages 1-24, June.
    20. Małgorzata Sieradzka & Ningbo Gao & Cui Quan & Agata Mlonka-Mędrala & Aneta Magdziarz, 2020. "Biomass Thermochemical Conversion via Pyrolysis with Integrated CO 2 Capture," Energies, MDPI, vol. 13(5), pages 1-18, February.
    21. Năstase, Gabriel & Șerban, Alexandru & Dragomir, George & Brezeanu, Alin Ionuț & Bucur, Irina, 2018. "Photovoltaic development in Romania. Reviewing what has been done," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 523-535.
    22. Chonmapat Torasa & Witthaya Mekhum, 2020. "Analyzing the Impact of Energy Imports, Fuel Substitution and Technological Change on Real GDP: A Panel Data Study of ASEAN Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 559-565.
    23. Andrew Hook & Victor Court & Benjamin K Sovacool & Steven Sorrell, 2020. "A Systematic Review of the Energy and Climate Impacts of Teleworking," Working Papers hal-03192905, HAL.
    24. T. M. I. Mahlia & H. Syaheed & A. E. Pg Abas & F. Kusumo & A. H. Shamsuddin & Hwai Chyuan Ong & M. R. Bilad, 2019. "Organic Rankine Cycle (ORC) System Applications for Solar Energy: Recent Technological Advances," Energies, MDPI, vol. 12(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bel, Germà & Joseph, Stephan, 2018. "Policy stringency under the European Union Emission trading system and its impact on technological change in the energy sector," Energy Policy, Elsevier, vol. 117(C), pages 434-444.
    2. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    3. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    4. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    5. Park, Joo Young, 2014. "The evolution of waste into a resource: Examining innovation in technologies reusing coal combustion by-products using patent data," Research Policy, Elsevier, vol. 43(10), pages 1816-1826.
    6. Fabrizi, Andrea & Guarini, Giulio & Meliciani, Valentina, 2018. "Green patents, regulatory policies and research network policies," Research Policy, Elsevier, vol. 47(6), pages 1018-1031.
    7. Vanessa Oltra & Rene Kemp & Frans P. De Vries, 2010. "Patents as a measure for eco-innovation," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 13(2), pages 130-148.
    8. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    9. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    10. Marius Ley & Tobias Stucki & Martin Woerter, 2016. "The Impact of Energy Prices on Green Innovation," The Energy Journal, , vol. 37(1), pages 41-76, January.
    11. Marin, Giovanni, 2014. "Do eco-innovations harm productivity growth through crowding out? Results of an extended CDM model for Italy," Research Policy, Elsevier, vol. 43(2), pages 301-317.
    12. Yao, Shiyue & Yu, Xueying & Yan, Sen & Wen, Shiyan, 2021. "Heterogeneous emission trading schemes and green innovation," Energy Policy, Elsevier, vol. 155(C).
    13. Tobias Stucki & Martin Woerter, 2017. "Green Inventions: Is Wait-and-see a Reasonable Option?," The Energy Journal, , vol. 38(4), pages 43-72, July.
    14. Germà Bel & Stephan Joseph, 2015. "“Certificate Oversupply in the European Union Emission Trading System and its Impact on Technological Change”," IREA Working Papers 201520, University of Barcelona, Research Institute of Applied Economics, revised Sep 2015.
    15. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    16. Nelson, Kelly P. & Parton, Lee C. & Brown, Zachary S., 2022. "Biofuels policy and innovation impacts: Evidence from biofuels and agricultural patent indicators," Energy Policy, Elsevier, vol. 162(C).
    17. Galloway, Emily & Johnson, Erik Paul, 2016. "Teaching an old dog new tricks: Firm learning from environmental regulation," Energy Economics, Elsevier, vol. 59(C), pages 1-10.
    18. Brian Chi-ang Lin & Siqi Zheng & Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    19. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    20. Lee, Jaegul & Veloso, Francisco M. & Hounshell, David A., 2011. "Linking induced technological change, and environmental regulation: Evidence from patenting in the U.S. auto industry," Research Policy, Elsevier, vol. 40(9), pages 1240-1252.

    More about this item

    Keywords

    Environmental Policy; Climate Change; Technological Change; Patent Count Data. JEL classification: O33; O38; Q55; Q58.;
    All these keywords.

    JEL classification:

    • O - Economic Development, Innovation, Technological Change, and Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ira:wpaper:201612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alicia García (email available below). General contact details of provider: https://edirc.repec.org/data/feubaes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.