IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20222716.html
   My bibliography  Save this paper

Estimating the Euro Area output gap using multivariate information and addressing the COVID-19 pandemic

Author

Listed:
  • Morley, James
  • Palenzuela, Diego Rodriguez
  • Sun, Yiqiao
  • Wong, Benjamin

Abstract

We estimate the euro area output gap by applying the Beveridge-Nelson decomposition based on a large Bayesian vector autoregression. Our approach incorporates multivariate information through the inclusion of a wide range of variables in the analysis and addresses data issues associated with the COVID-19 pandemic. The estimated output gap lines up well with the CEPR chronology of the business cycle for the euro area and we find that hours worked, more than the unemployment rate, provides the key source of information about labor utilization in the economy, especially in pinning down the depth of the output gap during the COVID-19 recession when the unemployment rate rose only moderately. Our findings suggest that labor market adjustments to the business cycle in the euro area occur more through the intensive, rather than extensive, margin. JEL Classification: C18, E17, E32

Suggested Citation

  • Morley, James & Palenzuela, Diego Rodriguez & Sun, Yiqiao & Wong, Benjamin, 2022. "Estimating the Euro Area output gap using multivariate information and addressing the COVID-19 pandemic," Working Paper Series 2716, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20222716
    Note: 2759141
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecb.wp2716~4cdced6e1f.en.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    3. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    4. Alessandro Barbarino & Travis J. Berge & Han Chen & Andrea Stella, 2020. "Which Output Gap Estimates Are Stable in Real Time and Why?," Finance and Economics Discussion Series 2020-102, Board of Governors of the Federal Reserve System (U.S.).
    5. Berger, Tino & Richter, Julia & Wong, Benjamin, 2022. "A unified approach for jointly estimating the business and financial cycle, and the role of financial factors," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    6. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    7. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    8. Marcellino, Massimiliano & Musso, Alberto, 2011. "The reliability of real-time estimates of the euro area output gap," Economic Modelling, Elsevier, vol. 28(4), pages 1842-1856, July.
    9. James Morley & Benjamin Wong, 2020. "Estimating and accounting for the output gap with large Bayesian vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 1-18, January.
    10. Morley, James C., 2002. "A state-space approach to calculating the Beveridge-Nelson decomposition," Economics Letters, Elsevier, vol. 75(1), pages 123-127, March.
    11. Michael C. Burda & Jennifer Hunt, 2011. "What Explains the German Labor Market Miracle in the Great Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 42(1 (Spring), pages 273-335.
    12. Fabio Busetti & Michele Caivano, 2016. "The trend–cycle decomposition of output and the Phillips curve: Bayesian estimates for Italy and the Euro area," Empirical Economics, Springer, vol. 50(4), pages 1565-1587, June.
    13. Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
    14. Evans, George & Reichlin, Lucrezia, 1994. "Information, forecasts, and measurement of the business cycle," Journal of Monetary Economics, Elsevier, vol. 33(2), pages 233-254, April.
    15. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    16. Kamber, Güneş & Wong, Benjamin, 2020. "Global factors and trend inflation," Journal of International Economics, Elsevier, vol. 122(C).
    17. Tino Berger & Christian Ochsner, 2022. "Tracking the German Business Cycle," MAGKS Papers on Economics 202212, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    18. Charles A. Fleischman & John M. Roberts, 2011. "From many series, one cycle: improved estimates of the business cycle from a multivariate unobserved components model," Finance and Economics Discussion Series 2011-46, Board of Governors of the Federal Reserve System (U.S.).
    19. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    20. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    21. Michael W. McCracken & Serena Ng, 2021. "FRED-QD: A Quarterly Database for Macroeconomic Research," Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
    22. Marek Jarociński & Bartosz Maćkowiak, 2017. "Granger Causal Priority and Choice of Variables in Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 319-329, May.
    23. Camba-Mendez, Gonzalo & Rodriguez-Palenzuela, Diego, 2003. "Assessment criteria for output gap estimates," Economic Modelling, Elsevier, vol. 20(3), pages 529-562, May.
    24. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    25. Ohanian, Lee E. & Raffo, Andrea, 2012. "Aggregate hours worked in OECD countries: New measurement and implications for business cycles," Journal of Monetary Economics, Elsevier, vol. 59(1), pages 40-56.
    26. González-Astudillo, Manuel, 2019. "An output gap measure for the euro area: Exploiting country-level and cross-sectional data heterogeneity," European Economic Review, Elsevier, vol. 120(C).
    27. Michele Lenza & Giorgio E. Primiceri, 2020. "How to Estimate a VAR after March 2020," NBER Working Papers 27771, National Bureau of Economic Research, Inc.
    28. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    29. Bobeica, Elena & Hartwig, Benny, 2021. "The COVID-19 shock and challenges for time series models," Working Paper Series 2558, European Central Bank.
    30. Simon Gilchrist & Benoit Mojon, 2018. "Credit Risk in the Euro Area," Economic Journal, Royal Economic Society, vol. 128(608), pages 118-158, February.
    31. Justiniano, Alejandro & Preston, Bruce, 2010. "Can structural small open-economy models account for the influence of foreign disturbances?," Journal of International Economics, Elsevier, vol. 81(1), pages 61-74, May.
    32. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    33. Antonio M. Conti & Elisa Guglielminetti & Marianna Riggi, 2019. "Labour productivity and the wageless recovery," Temi di discussione (Economic working papers) 1257, Bank of Italy, Economic Research and International Relations Area.
    34. Berger, Tino & Morley, James & Wong, Benjamin, 2023. "Nowcasting the output gap," Journal of Econometrics, Elsevier, vol. 232(1), pages 18-34.
      • Tino Berger & James Morley & Benjamin Wong, 2020. "Nowcasting the output gap," CAMA Working Papers 2020-78, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    35. Simon Gilchrist & Benoit Mojon, 2018. "Credit Risk in the Euro Area," Economic Journal, Royal Economic Society, vol. 128(608), pages 118-158, February.
    36. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    37. Canova, Fabio, 2020. "FAQ: How do I extract the output gap?," Working Paper Series 386, Sveriges Riksbank (Central Bank of Sweden).
    38. Zha, Tao, 1999. "Block recursion and structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 90(2), pages 291-316, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Granados, Camilo & Parra-Amado, Daniel, 2024. "Estimating the output gap after COVID: How to address unprecedented macroeconomic variations," Economic Modelling, Elsevier, vol. 135(C).
    2. Haderer, Michaela, 2022. "An Estimated DSGE Model of the Euro Area with Expectations about the Timing and Nature of Liftoff from the Lower Bound," Working Papers 2022-05, University of Sydney, School of Economics.
    3. Tino Berger & Lorenzo Pozzi, 2023. "Cyclical consumption," Tinbergen Institute Discussion Papers 23-064/VI, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berger, Tino & Richter, Julia & Wong, Benjamin, 2022. "A unified approach for jointly estimating the business and financial cycle, and the role of financial factors," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    2. James Morley & Benjamin Wong, 2020. "Estimating and accounting for the output gap with large Bayesian vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 1-18, January.
    3. Tino Berger & Lorenzo Pozzi, 2023. "Cyclical consumption," Tinbergen Institute Discussion Papers 23-064/VI, Tinbergen Institute.
    4. Berger, Tino & Richter, Julia & Wong, Benjamin, 2022. "A unified approach for jointly estimating the business and financial cycle, and the role of financial factors," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    5. Berger, Tino & Morley, James & Wong, Benjamin, 2023. "Nowcasting the output gap," Journal of Econometrics, Elsevier, vol. 232(1), pages 18-34.
      • Tino Berger & James Morley & Benjamin Wong, 2020. "Nowcasting the output gap," CAMA Working Papers 2020-78, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Murasawa Yasutomo, 2022. "Bayesian multivariate Beveridge–Nelson decomposition of I(1) and I(2) series with cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(3), pages 387-415, June.
    7. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    8. Kamber, Güneş & Wong, Benjamin, 2020. "Global factors and trend inflation," Journal of International Economics, Elsevier, vol. 122(C).
    9. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    10. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    11. Cross, Jamie L. & Hou, Chenghan & Koop, Gary & Poon, Aubrey, 2023. "Large stochastic volatility in mean VARs," Journal of Econometrics, Elsevier, vol. 236(1).
    12. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    13. Hartwig, Benny, 2022. "Bayesian VARs and prior calibration in times of COVID-19," Discussion Papers 52/2022, Deutsche Bundesbank.
    14. Francesco Furlanetto & Kåre Hagelund & Frank Hansen & Ørjan Robstad, 2020. "Norges Bank Output Gap Estimates: Forecasting Properties, Reliability and Cyclical Sensitivity," Working Paper 2020/7, Norges Bank.
    15. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    16. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
    17. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    18. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    19. Yasutomo Murasawa, 2014. "Measuring the natural rates, gaps, and deviation cycles," Empirical Economics, Springer, vol. 47(2), pages 495-522, September.
    20. Joshua C. C. Chan, 2022. "Asymmetric conjugate priors for large Bayesian VARs," Quantitative Economics, Econometric Society, vol. 13(3), pages 1145-1169, July.

    More about this item

    Keywords

    Bayesian estimation; Beveridge-Nelson decomposition; multivariate information; output gap;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20222716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.