IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2902.html
   My bibliography  Save this paper

On Harsanyi dividends and asymmetric values

Author

Listed:
  • Pierre Dehez

Abstract

The concept of dividend in transferable utility games was introduced by Harsanyi [1959], offering a unifying framework for studying various valuation concepts, from the Shapley value to the different notions of values introduced by Weber. Using the decomposition of the characteristic function used by Shapley to prove uniqueness of his value, the idea of Harsanyi was to associate to each coalition a dividend to be distributed among its members to define an allocation. Many authors have contributed to that question. We offer a synthesis of their work, with a particular attention to restrictions on dividend distributions, starting with the seminal contributions of Vasil’ev, Hammer, Peled and Sorensen and Derks, Haller and Peters, until the recent papers of van den Brink, van der Laan and Vasil’ev.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Pierre Dehez, 2017. "On Harsanyi dividends and asymmetric values," LIDAM Reprints CORE 2902, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2902
    Note: In : International Game Theory Review, 19(3), 2017
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dragan, I. & Potters, J.A.M. & Tijs, S.H., 1989. "Superadditivity for solutions of coalitional games," Other publications TiSEM 283e2594-e3a0-418d-ae5e-2, Tilburg University, School of Economics and Management.
    2. Dehez, Pierre & Ferey, Samuel, 2013. "How to share joint liability: A cooperative game approach," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 44-50.
    3. René Brink & Gerard Laan & Valeri Vasil’ev, 2014. "Constrained core solutions for totally positive games with ordered players," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 351-368, May.
    4. Hindriks, Jean & Myles, Gareth D., 2013. "Intermediate Public Economics," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262018691, April.
    5. Samuel Ferey & Pierre Dehez, 2016. "Multiple Causation, Apportionment, and the Shapley Value," The Journal of Legal Studies, University of Chicago Press, vol. 45(1), pages 143-171.
    6. Pierre Dehez & Daniela Tellone, 2013. "Data Games: Sharing Public Goods with Exclusion," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 15(4), pages 654-673, August.
    7. Maniquet, Francois, 2003. "A characterization of the Shapley value in queueing problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 90-103, March.
    8. Monderer, Dov & Samet, Dov & Shapley, Lloyd S, 1992. "Weighted Values and the Core," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(1), pages 27-39.
    9. René Brink & Gerard Laan & Vitaly Pruzhansky, 2011. "Harsanyi power solutions for graph-restricted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 87-110, February.
    10. Haeringer, Guillaume, 2006. "A new weight scheme for the Shapley value," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 88-98, July.
    11. Pierre Dehez, 2011. "Allocation Of Fixed Costs: Characterization Of The (Dual) Weighted Shapley Value," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 141-157.
    12. Valeri Vasil'Ev, 2007. "Weber Polyhedron And Weighted Shapley Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 139-150.
    13. Jean Derks & Gerard Laan & Valery Vasil’ev, 2006. "Characterizations of the Random Order Values by Harsanyi Payoff Vectors," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 155-163, August.
    14. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Fujita,Masahisa & Thisse,Jacques-François, 2013. "Economics of Agglomeration," Cambridge Books, Cambridge University Press, number 9780521171960, October.
    16. Billot, Antoine & Thisse, Jacques-Francois, 2005. "How to share when context matters: The Mobius value as a generalized solution for cooperative games," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 1007-1029, December.
    17. Jean Derks & Gerard Laan & Valery Vasil’ev, 2010. "On the Harsanyi payoff vectors and Harsanyi imputations," Theory and Decision, Springer, vol. 68(3), pages 301-310, March.
    18. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    19. S. C. Littlechild & G. Owen, 1973. "A Simple Expression for the Shapley Value in a Special Case," Management Science, INFORMS, vol. 20(3), pages 370-372, November.
    20. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    21. Derks, Jean, 2005. "A new proof for Weber's characterization of the random order values," Mathematical Social Sciences, Elsevier, vol. 49(3), pages 327-334, May.
    22. Peleg, B, 1986. "On the Reduced Game Property and Its Converse," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 187-200.
    23. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    24. Ichiishi, Tatsuro, 1981. "Super-modularity: Applications to convex games and to the greedy algorithm for LP," Journal of Economic Theory, Elsevier, vol. 25(2), pages 283-286, October.
    25. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    26. Guillermo Owen, 1968. "Communications to the Editor--A Note on the Shapley Value," Management Science, INFORMS, vol. 14(11), pages 731-731, July.
    27. Kannai, Yakar, 1992. "The core and balancedness," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 12, pages 355-395, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Dehez & Victor Ginsburgh, 2020. "Approval voting and Shapley ranking," Public Choice, Springer, vol. 184(3), pages 415-428, September.
    2. Dehez, Pierre, 2023. "Sharing a collective probability of success," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 122-127.
    3. Pierre Dehez, 2024. "Cooperative Product Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 26(01), pages 1-13, March.
    4. Manfred Besner, 2022. "Harsanyi support levels solutions," Theory and Decision, Springer, vol. 93(1), pages 105-130, July.
    5. Estela Sánchez-Rodríguez & Miguel Ángel Mirás Calvo & Carmen Quinteiro Sandomingo & Iago Núñez Lugilde, 2024. "Coalition-weighted Shapley values," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 547-577, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demuynck, Thomas & Rock, Bram De & Ginsburgh, Victor, 2016. "The transfer paradox in welfare space," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 1-4.
    2. Samuel Ferey & Pierre Dehez, 2016. "Multiple Causation, Apportionment, and the Shapley Value," The Journal of Legal Studies, University of Chicago Press, vol. 45(1), pages 143-171.
    3. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "The proportional Shapley value and applications," Games and Economic Behavior, Elsevier, vol. 108(C), pages 93-112.
    4. Dehez, Pierre, 2023. "Sharing a collective probability of success," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 122-127.
    5. Zhengxing Zou & Qiang Zhang, 2018. "Harsanyi power solution for games with restricted cooperation," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 26-47, January.
    6. Manfred Besner, 2020. "Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 193-212, June.
    7. René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 0000. "The Restricted Core for Totally Positive Games with Ordered Players," Tinbergen Institute Discussion Papers 09-038/1, Tinbergen Institute.
    8. Dehez, Pierre & Ferey, Samuel, 2013. "How to share joint liability: A cooperative game approach," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 44-50.
    9. Moulin, Herve, 2002. "Axiomatic cost and surplus sharing," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 1, chapter 6, pages 289-357, Elsevier.
    10. Jens Gudmundsson & Jens Leth Hougaard & Chiu Yu Ko, 2020. "Sharing sequentially triggered losses," IFRO Working Paper 2020/05, University of Copenhagen, Department of Food and Resource Economics.
    11. Bilbao, J.M. & Jiménez, N. & López, J.J., 2010. "The selectope for bicooperative games," European Journal of Operational Research, Elsevier, vol. 204(3), pages 522-532, August.
    12. Dehez, Pierre, 2021. "1-convex transferable utility games, a reappraisal," LIDAM Discussion Papers CORE 2021016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Takayuki Oishi & Gerard van der Laan & René van den Brink, 2023. "Axiomatic analysis of liability problems with rooted-tree networks in tort law," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(1), pages 229-258, January.
    14. René Brink & René Levínský & Miroslav Zelený, 2015. "On proper Shapley values for monotone TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 449-471, May.
    15. Estela Sánchez-Rodríguez & Miguel Ángel Mirás Calvo & Carmen Quinteiro Sandomingo & Iago Núñez Lugilde, 2024. "Coalition-weighted Shapley values," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 547-577, June.
    16. Sylvain Béal & Marc Deschamps & Catherine Refait-Alexandre & Guillaume Sekli, 2022. "Early contributors, cooperation and fair rewards in crowdfunding," Working Papers hal-04222321, HAL.
    17. Sylvain Béal & Stéphane Gonzalez & Philippe Solal & Peter Sudhölter, 2023. "Axiomatic characterizations of the core without consistency," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 687-701, September.
    18. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    19. Kamijo, Yoshio, 2009. "A linear proportional effort allocation rule," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 341-353, November.
    20. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.