IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/0511.html
   My bibliography  Save this paper

Diversity and Security in UK Electricity Generation: The Influence of Low Carbon Objectives

Author

Listed:
  • Grubb, M.
  • Butler, L.
  • Sinden, G.

Abstract

We explore the relationship between low carbon objectives and the strategic security of electricity in the context of the UK Electricity System. We consider diversity of fuel source mix to represent one dimension of security - robustness against interruptions of any one source - and apply two different diversity indices to the range of electricity system scenarios produced by the UK government and independent researchers. Using data on wind generation we also consider whether a second dimension of security - the reliability of generation availability - is compromised by intermittency of renewable generation. Our results show that low carbon objectives are uniformly associated with greater long-term diversity in UK electricity. We discuss reasons for this result, explore sensitivities, and briefly discuss possible policy instruments associated with diversity and their limitations.

Suggested Citation

  • Grubb, M. & Butler, L. & Sinden, G., 2005. "Diversity and Security in UK Electricity Generation: The Influence of Low Carbon Objectives," Cambridge Working Papers in Economics 0511, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:0511
    Note: CMI, IO
    as

    Download full text from publisher

    File URL: https://www.econ.cam.ac.uk/electricity/publications/wp/ep74.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stirling, Andrew, 1994. "Diversity and ignorance in electricity supply investment : Addressing the solution rather than the problem," Energy Policy, Elsevier, vol. 22(3), pages 195-216, March.
    2. Keller, Katja & Wild, Jorg, 2004. "Long-term investment in electricity: a trade-off between co-ordination and competition?," Utilities Policy, Elsevier, vol. 12(4), pages 243-251, December.
    3. Neuhoff, Karsten & De Vries, Laurens, 2004. "Insufficient incentives for investment in electricity generations," Utilities Policy, Elsevier, vol. 12(4), pages 253-267, December.
    4. Lieb-Dóczy, Enese & Börner, Achim-Rüdiger & MacKerron, Gordon, 2003. "Who Secures the Security of Supply? European Perspectives on Security, Competition, and Liability," The Electricity Journal, Elsevier, vol. 16(10), pages 10-19, December.
    5. Costantini, Valeria & Gracceva, Francesco & Markandya, Anil & Vicini, Giorgio, 2007. "Security of energy supply: Comparing scenarios from a European perspective," Energy Policy, Elsevier, vol. 35(1), pages 210-226, January.
    6. Karsten Neuhoff, 2005. "Large-Scale Deployment of Renewables for Electricity Generation," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 88-110, Spring.
    7. Karsten Neuhoff & Laurens De Vries, 2004. "Insufficient Incentives for Investment," Working Papers EP42, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Grubb, M. J., 1991. "The integration of renewable electricity sources," Energy Policy, Elsevier, vol. 19(7), pages 670-688, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    2. Roques, F. & Newbery, D.M. & Nuttall, W.J., 2004. "Generation Adequacy and Investment Incentives in Britain: from the Pool to NETA," Cambridge Working Papers in Economics 0459, Faculty of Economics, University of Cambridge.
    3. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    4. de Vries, Laurens & Heijnen, Petra, 2008. "The impact of electricity market design upon investment under uncertainty: The effectiveness of capacity mechanisms," Utilities Policy, Elsevier, vol. 16(3), pages 215-227, September.
    5. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2016. "The rationales for technology-specific renewable energy support: Conceptual arguments and their relevance for Germany," UFZ Discussion Papers 4/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    6. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    7. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    8. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    9. Ioannidis, Alexis & Chalvatzis, Konstantinos J. & Li, Xin & Notton, Gilles & Stephanides, Phedeas, 2019. "The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands," Renewable Energy, Elsevier, vol. 143(C), pages 440-452.
    10. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    11. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    12. Adrien de Hauteclocque & Jean-Michel Glachant, 2011. "Long-term Contracts and Competition Policy in European Energy Markets," Chapters, in: Jean-Michel Glachant & Dominique Finon & Adrien de Hauteclocque (ed.), Competition, Contracts and Electricity Markets, chapter 9, Edward Elgar Publishing.
    13. Rubio-Varas, Mar & Muñoz-Delgado, Beatriz, 2017. "200 years diversifying the energy mix? Diversification paths of the energy baskets of European early comers vs. latecomers," Working Papers in Economic History 2017/01, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
    14. Munoz, Francisco D. & van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F. & Watson, Jean-Paul, 2017. "Does risk aversion affect transmission and generation planning? A Western North America case study," Energy Economics, Elsevier, vol. 64(C), pages 213-225.
    15. Roques, F.A. & Savva , N.S., 2006. "Price Cap Regulation and Investment Incentives under Demand Uncertainty," Cambridge Working Papers in Economics 0636, Faculty of Economics, University of Cambridge.
    16. De Vries, Laurens J., 2007. "Generation adequacy: Helping the market do its job," Utilities Policy, Elsevier, vol. 15(1), pages 20-35, March.
    17. Simshauser, Paul & Tian, Yuan & Whish-Wilson, Patrick, 2015. "Vertical integration in energy-only electricity markets," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 35-56.
    18. Hauteclocque, Adrien de & Glachant, Jean-Michel, 2009. "Long-term energy supply contracts in European competition policy: Fuzzy not crazy," Energy Policy, Elsevier, vol. 37(12), pages 5399-5407, December.
    19. Guy Meunier, 2014. "Risk Aversion and Technology Portfolios," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(4), pages 347-365, June.
    20. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).

    More about this item

    Keywords

    Diversity; Security; Low Carbon; Wind Generation; Electricity;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:0511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.