IDEAS home Printed from https://ideas.repec.org/p/boc/bocoec/692.html
   My bibliography  Save this paper

An Extended Class of Instrumental Variables for the Estimation of Causal Effects

Author

Listed:
  • Karim Chalak

    (Boston College)

  • Halbert White

Abstract

This paper examines the ways in which structural systems can yield observed variables, other than the cause or treatment of interest, that can play an instrumental role in identifying and estimating causal effects. We focus speciÖcally on the ways in which structures determine exclusion restrictions and conditional exogeneity relations that act to ensure identification. We show that by carefully specifying the structural equations and by extending the standard notion of instrumental variables, one can identify and estimate causal effects in the endogenous regressor case for a broad range of economically relevant structures. Some of these have not previously been recognized. Our results there create new opportunities for identifying and estimating causal effects in non-experimental situations. Our results for more familiar structures provide new insights. For example, we extend results of Angrist, Imbens, and Rubin (1996) by taking into account an important distinction between cases where Z is an observed exogenous instrument and those where it is a proxy for an unobserved exogenous instrument. A main message emerging from our analysis is the central importance of sufficiently specifying the causal relations governing the unobservables, as these play a crucial role in creating obstacles or opportunities for identification. Because our results exhaust the possibilities for identification, we ensure that there are no other opportunities for identification based on exclusion restrictions and conditional independence relations still to be discovered. To accomplish this characterization, we introduce notions of conditioning and conditional extended instrumental variables (EIVs). These are not proper instruments, as they are endogenous. They nevertheless permit identification and estimation of causal effects. We analyze methods using these EIVs either singly or jointly.

Suggested Citation

  • Karim Chalak & Halbert White, 2007. "An Extended Class of Instrumental Variables for the Estimation of Causal Effects," Boston College Working Papers in Economics 692, Boston College Department of Economics, revised 30 Nov 2009.
  • Handle: RePEc:boc:bocoec:692
    as

    Download full text from publisher

    File URL: https://fmwww.bc.edu/EC-P/wp692.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. White, Halbert, 2006. "Time-series estimation of the effects of natural experiments," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 527-566.
    2. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    3. Joshua D. Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 69-85, Fall.
    4. Pedro Carneiro & James J. Heckman & Edward Vytlacil, 2010. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," Econometrica, Econometric Society, vol. 78(1), pages 377-394, January.
    5. Susanne Schennach & Halbert White & Karim Chalak, 2007. "Local Indirect Least Squares and Average Marginal Effects in Nonseparable Structural Systems," Boston College Working Papers in Economics 680, Boston College Department of Economics, revised 26 Dec 2009.
    6. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    7. Goldberger, Arthur S, 1972. "Structural Equation Methods in the Social Sciences," Econometrica, Econometric Society, vol. 40(6), pages 979-1001, November.
    8. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records: Errata," American Economic Review, American Economic Association, vol. 80(5), pages 1284-1286, December.
    9. Karim Chalak & Halbert White, 2008. "Causality, Conditional Independence, and Graphical Separation in Settable Systems," Boston College Working Papers in Economics 689, Boston College Department of Economics, revised 04 Jul 2010.
    10. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-336, June.
    11. Kristin F. Butcher & Anne Case, 1994. "The Effect of Sibling Sex Composition on Women's Education and Earnings," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 531-563.
    12. James H. Stock & Francesco Trebbi, 2003. "Retrospectives: Who Invented Instrumental Variable Regression?," Journal of Economic Perspectives, American Economic Association, vol. 17(3), pages 177-194, Summer.
    13. Hausman, Jerry A & Taylor, William E, 1983. "Identification in Linear Simultaneous Equations Models with Covariance Restrictions: An Instrumental Variables Interpretation," Econometrica, Econometric Society, vol. 51(5), pages 1527-1549, September.
    14. Emiliana Vegas, 2005. "Incentives to Improve Teaching : Lessons from Latin America," World Bank Publications - Books, The World Bank Group, number 7265.
    15. Vincent P. Crawford, 2006. "Look-ups as the Windows of the Strategic Soul: Studying Cognition via Information Search in Game Experiments," Levine's Bibliography 321307000000000462, UCLA Department of Economics.
    16. Joshua Angrist & Alan Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Working Papers 834, Princeton University, Department of Economics, Industrial Relations Section..
    17. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
    18. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    19. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    20. Stefan Hoderlein & Enno Mammen, 2007. "Identification of Marginal Effects in Nonseparable Models Without Monotonicity," Econometrica, Econometric Society, vol. 75(5), pages 1513-1518, September.
    21. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    22. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    23. James Heckman, 1997. "Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 441-462.
    24. Hoover, Kevin D., 2004. "Lost Causes," Journal of the History of Economic Thought, Cambridge University Press, vol. 26(2), pages 149-164, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    2. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    3. Montes-Rojas, Gabriel & Galvao, Antonio F., 2014. "Bayesian endogeneity bias modeling," Economics Letters, Elsevier, vol. 122(1), pages 36-39.
    4. Guasch, J. Luis, 2012. "Robust investment climate effects on alternative firm-level productivity measures," UC3M Working papers. Economics we1201, Universidad Carlos III de Madrid. Departamento de Economía.
    5. Schennach, Susanne M., 2008. "Quantile Regression With Mismeasured Covariates," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1010-1043, August.
    6. Susanne Schennach & Halbert White & Karim Chalak, 2007. "Local Indirect Least Squares and Average Marginal Effects in Nonseparable Structural Systems," Boston College Working Papers in Economics 680, Boston College Department of Economics, revised 26 Dec 2009.
    7. Richard H. Spady, 2007. "Semiparametric Methods for the Measurement of Latent Attitudes and the Estimation of Their Behavioural Consequences," Economics Working Papers ECO2007/29, European University Institute.
    8. Graevenitz, Georg von & Weber, Richard, 2011. "How to Educate Entrepreneurs?," Discussion Papers in Business Administration 12280, University of Munich, Munich School of Management.
    9. Dionissi Aliprantis, 2013. "Covariates and causal effects: the problem of context," Working Papers (Old Series) 1310, Federal Reserve Bank of Cleveland.
    10. Santos, Andres, 2011. "Instrumental variable methods for recovering continuous linear functionals," Journal of Econometrics, Elsevier, vol. 161(2), pages 129-146, April.
    11. Cameron McIntosh, 2014. "The presence of an error term does not preclude causal inference in regression: a comment on Krause (2012)," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(1), pages 243-250, January.
    12. Halbert White & Karim Chalak, 2008. "Identifying Structural Effects in Nonseparable Systems Using Covariates," Boston College Working Papers in Economics 734, Boston College Department of Economics.
    13. Paulo Parente & Richard Smith, 2012. "Exogeneity in semiparametric moment condition models," CeMMAP working papers CWP30/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Gutknecht, Daniel, 2011. "Nonclassical Measurement Error in a Nonlinear (Duration) Model," Economic Research Papers 270763, University of Warwick - Department of Economics.
    15. Karim Chalak & Halbert White, 2008. "Causality, Conditional Independence, and Graphical Separation in Settable Systems," Boston College Working Papers in Economics 689, Boston College Department of Economics, revised 04 Jul 2010.
    16. Pearl Judea, 2010. "An Introduction to Causal Inference," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-62, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim Chalak & Halbert White, 2011. "Viewpoint: An extended class of instrumental variables for the estimation of causal effects," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 44(1), pages 1-51, February.
    2. Halbert White & Karim Chalak, 2008. "Identifying Structural Effects in Nonseparable Systems Using Covariates," Boston College Working Papers in Economics 734, Boston College Department of Economics.
    3. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    4. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    5. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    6. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    7. Dionissi Aliprantis, 2013. "Covariates and causal effects: the problem of context," Working Papers (Old Series) 1310, Federal Reserve Bank of Cleveland.
    8. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    9. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
    10. Susanne Schennach & Halbert White & Karim Chalak, 2007. "Local Indirect Least Squares and Average Marginal Effects in Nonseparable Structural Systems," Boston College Working Papers in Economics 680, Boston College Department of Economics, revised 26 Dec 2009.
    11. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    12. Heckman, James J., 2010. "The Assumptions Underlying Evaluation Estimators," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    13. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    14. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    15. Eva Deuchert & Martin Huber, 2017. "A Cautionary Tale About Control Variables in IV Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(3), pages 411-425, June.
    16. John DiNardo & David S. Lee, 2010. "Program Evaluation and Research Designs," Working Papers 1228, Princeton University, Department of Economics, Industrial Relations Section..
    17. Guanghui Pan, 2024. "Methodological Foundations of Modern Causal Inference in Social Science Research," Papers 2408.00032, arXiv.org.
    18. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    19. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    20. DiNardo, John & Lee, David S., 2011. "Program Evaluation and Research Designs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 5, pages 463-536, Elsevier.

    More about this item

    Keywords

    causality; conditional exogeneity; endogeneity; exogeneity; identification; instrumental variables; and simultaneous equations.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debocus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.