IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v37y2022i3p500-520.html
   My bibliography  Save this article

Expanding health insurance for the elderly of the Philippines

Author

Listed:
  • Michael R.M. Abrigo
  • Timothy J. Halliday
  • Teresa Molina

Abstract

This paper evaluates a Filipino policy that expanded health insurance coverage of its senior citizens, aged 60 and older, in 2014. We employ an instrumental variables estimator in which the first stage is a difference‐in‐differences specification that exploits the age discontinuity at age 60, along with data from before and after the policy. First stage results show the expansion increased insurance coverage by approximately 16 percentage points. The compliers, those induced by the policy to obtain insurance, were disproportionately female and largely from the middle of the socioeconomic distribution. Second stage regressions indicate that out‐of‐pocket medical expenditures more than doubled among the compliers. We argue that this is most likely driven by an outward shift in the medical demand curve.

Suggested Citation

  • Michael R.M. Abrigo & Timothy J. Halliday & Teresa Molina, 2022. "Expanding health insurance for the elderly of the Philippines," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 500-520, April.
  • Handle: RePEc:wly:japmet:v:37:y:2022:i:3:p:500-520
    DOI: 10.1002/jae.2883
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2883
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.2883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast their Effects in New," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 71, Elsevier.
    2. Joseph J. Capuno & Aleli D. Kraft & Stella Quimbo & Carlos R. Tan & Adam Wagstaff, 2016. "Effects of Price, Information, and Transactions Cost Interventions to Raise Voluntary Enrollment in a Social Health Insurance Scheme: A Randomized Experiment in the Philippines," Health Economics, John Wiley & Sons, Ltd., vol. 25(6), pages 650-662, June.
    3. Bernal, Noelia & Carpio, Miguel A. & Klein, Tobias J., 2017. "The effects of access to health insurance: Evidence from a regression discontinuity design in Peru," Journal of Public Economics, Elsevier, vol. 154(C), pages 122-136.
    4. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    5. Amanda Kowalski, 2016. "Doing more when you're running LATE: Applying marginal treatment effect methods to examine treatment effect heterogeneity in experiments," Artefactual Field Experiments 00560, The Field Experiments Website.
    6. Jonathan Gruber & Nathaniel Hendren & Robert M. Townsend, 2014. "The Great Equalizer: Health Care Access and Infant Mortality in Thailand," American Economic Journal: Applied Economics, American Economic Association, vol. 6(1), pages 91-107, January.
    7. John Mullahy, 1998. "Much Ado About Two: Reconsidering Retransformation and the Two-Part Model in Health Economics," NBER Technical Working Papers 0228, National Bureau of Economic Research, Inc.
    8. Baillon, Aurélien & Capuno, Joseph & O'Donnell, Owen & Tan, Carlos Antonio & van Wilgenburg, Kim, 2022. "Persistent effects of temporary incentives: Evidence from a nationwide health insurance experiment," Journal of Health Economics, Elsevier, vol. 81(C).
    9. Hitoshi Shigeoka, 2014. "The Effect of Patient Cost Sharing on Utilization, Health, and Risk Protection," American Economic Review, American Economic Association, vol. 104(7), pages 2152-2184, July.
    10. Sparrow, Robert & Suryahadi, Asep & Widyanti, Wenefrida, 2013. "Social health insurance for the poor: Targeting and impact of Indonesia's Askeskin programme," Social Science & Medicine, Elsevier, vol. 96(C), pages 264-271.
    11. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    12. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    13. Wagstaff, Adam & Lindelow, Magnus, 2008. "Can insurance increase financial risk?: The curious case of health insurance in China," Journal of Health Economics, Elsevier, vol. 27(4), pages 990-1005, July.
    14. Andrew Gelman & Guido Imbens, 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 447-456, July.
    15. Amy Finkelstein & Sarah Taubman & Bill Wright & Mira Bernstein & Jonathan Gruber & Joseph P. Newhouse & Heidi Allen & Katherine Baicker, 2012. "The Oregon Health Insurance Experiment: Evidence from the First Year," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(3), pages 1057-1106.
    16. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    17. Manning, Willard G, et al, 1987. "Health Insurance and the Demand for Medical Care: Evidence from a Randomized Experiment," American Economic Review, American Economic Association, vol. 77(3), pages 251-277, June.
    18. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    19. Mullahy, John, 1998. "Much ado about two: reconsidering retransformation and the two-part model in health econometrics," Journal of Health Economics, Elsevier, vol. 17(3), pages 247-281, June.
    20. Amanda E. Kowalski, 2018. "Extrapolation using Selection and Moral Hazard Heterogeneity from within the Oregon Health Insurance Experiment," Cowles Foundation Discussion Papers 2135, Cowles Foundation for Research in Economics, Yale University.
    21. Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017. "Beyond LATE with a Discrete Instrument," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
    22. Brigham R. Frandsen, 2017. "Party Bias in Union Representation Elections: Testing for Manipulation in the Regression Discontinuity Design when the Running Variable is Discrete," Advances in Econometrics, in: Regression Discontinuity Designs, volume 38, pages 281-315, Emerald Group Publishing Limited.
    23. David Card & Carlos Dobkin & Nicole Maestas, 2008. "The Impact of Nearly Universal Insurance Coverage on Health Care Utilization: Evidence from Medicare," American Economic Review, American Economic Association, vol. 98(5), pages 2242-2258, December.
    24. Lawrence F. Katz & Jeffrey R. Kling & Jeffrey B. Liebman, 2001. "Moving to Opportunity in Boston: Early Results of a Randomized Mobility Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 607-654.
    25. Amanda E. Kowalski, 2016. "Doing More When You're Running LATE: Applying Marginal Treatment Effect Methods to Examine Treatment Effect Heterogeneity in Experiments for the Young and Privately Insured"," Cowles Foundation Discussion Papers 2045, Cowles Foundation for Research in Economics, Yale University.
    26. Keeler, Emmett B. & Rolph, John E., 1988. "The demand for episodes of treatment in the health insurance experiment," Journal of Health Economics, Elsevier, vol. 7(4), pages 337-367, December.
    27. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    28. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    29. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    30. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O'Donnell, Owen, 2024. "Health and health system effects on poverty: A narrative review of global evidence," Health Policy, Elsevier, vol. 142(C).
    2. Timothy J. Halliday & Randall Q. Akee, 2020. "The impact of Medicaid on medical utilization in a vulnerable population: Evidence from COFA migrants," Health Economics, John Wiley & Sons, Ltd., vol. 29(10), pages 1231-1250, October.
    3. Takaku, Reo & Yokoyama, Izumi, 2022. "The financial health of “swing hospitals” during the first COVID-19 outbreak," Journal of the Japanese and International Economies, Elsevier, vol. 65(C).
    4. Noelia Bernal & Joan Costa-i-Font & Patricia Ritter, 2022. "The Effect of Health Insurance on Child Nutritional Outcomes. Evidence from a Regression Discontinuity Design in Peru," CESifo Working Paper Series 9887, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amanda E Kowalski, 2023. "Behaviour within a Clinical Trial and Implications for Mammography Guidelines," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(1), pages 432-462.
    2. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    3. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    4. Nicolas R. Ziebarth, 2018. "Social Insurance and Health," Contributions to Economic Analysis, in: Health Econometrics, volume 127, pages 57-84, Emerald Group Publishing Limited.
    5. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    6. Gong, Jie & Lu, Yi & Xie, Huihua, 2020. "The average and distributional effects of teenage adversity on long-term health," Journal of Health Economics, Elsevier, vol. 71(C).
    7. Marx, Philip, 2024. "Sharp bounds in the latent index selection model," Journal of Econometrics, Elsevier, vol. 238(2).
    8. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    9. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    10. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    11. Patrick Kline & Christopher R. Walters, 2019. "On Heckits, LATE, and Numerical Equivalence," Econometrica, Econometric Society, vol. 87(2), pages 677-696, March.
    12. Benjamin C. Chu, 2023. "Who did the ACA Medicaid expansion impact? Estimating the probability of being a complier," Health Economics, John Wiley & Sons, Ltd., vol. 32(7), pages 1626-1655, July.
    13. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    14. Schmieder, Julia, 2021. "Fertility as a driver of maternal employment," Labour Economics, Elsevier, vol. 72(C).
    15. Naimi Johansson & Niklas Jakobsson & Mikael Svensson, 2019. "Effects of primary care cost-sharing among young adults: varying impact across income groups and gender," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(8), pages 1271-1280, November.
    16. Julia Schmieder, 2020. "Fertility as a Driver of Maternal Employment," Discussion Papers of DIW Berlin 1882, DIW Berlin, German Institute for Economic Research.
    17. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    18. Mengna Luan & Wenjing Shi & Zhigang Tao & Hongjie Yuan, 2023. "When patients have better insurance coverage in China: Provider incentives, costs, and quality of care," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 31(4), pages 1073-1106, October.
    19. Kurt Lavetti & Thomas DeLeire & Nicolas R. Ziebarth, 2023. "How do low‐income enrollees in the Affordable Care Act marketplaces respond to cost‐sharing?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(1), pages 155-183, March.
    20. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.

    More about this item

    JEL classification:

    • I10 - Health, Education, and Welfare - - Health - - - General
    • I13 - Health, Education, and Welfare - - Health - - - Health Insurance, Public and Private
    • I14 - Health, Education, and Welfare - - Health - - - Health and Inequality

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:37:y:2022:i:3:p:500-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.