IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v22y2003i2p115-134.html
   My bibliography  Save this article

A Comparison of Partially Adaptive and Reweighted Least Squares Estimation

Author

Listed:
  • Brian Boyer
  • James McDonald
  • Whitney Newey

Abstract

The small sample performance of least median of squares, reweighted least squares, least squares, least absolute deviations, and three partially adaptive estimators are compared using Monte Carlo simulations. Two data problems are addressed in the paper: (1) data generated from non-normal error distributions and (2) contaminated data. Breakdown plots are used to investigate the sensitivity of partially adaptive estimators to data contamination relative to RLS. One partially adaptive estimator performs especially well when the errors are skewed, while another partially adaptive estimator and RLS perform particularly well when the errors are extremely leptokur-totic. In comparison with RLS, partially adaptive estimators are only moderately effective in resisting data contamination; however, they outperform least squares and least absolute deviation estimators.

Suggested Citation

  • Brian Boyer & James McDonald & Whitney Newey, 2003. "A Comparison of Partially Adaptive and Reweighted Least Squares Estimation," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 115-134.
  • Handle: RePEc:taf:emetrv:v:22:y:2003:i:2:p:115-134
    DOI: 10.1081/ETC-120020459
    as

    Download full text from publisher

    File URL: https://www.tandfonline.com/doi/abs/10.1081/ETC-120020459
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1081/ETC-120020459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Usta, Ilhan & Kantar, Yeliz Mert, 2011. "On the performance of the flexible maximum entropy distributions within partially adaptive estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2172-2182, June.
    2. Steven Caudill & James Long, 2010. "Do former athletes make better managers? Evidence from a partially adaptive grouped-data regression model," Empirical Economics, Springer, vol. 39(1), pages 275-290, August.
    3. James B. McDonald & Richard A. Michelfelder & Panayiotis Theodossiou, 2009. "Robust Regression Estimation Methods and Intercept Bias: A Capital Asset Pricing Model Application," Multinational Finance Journal, Multinational Finance Journal, vol. 13(3-4), pages 293-321, September.
    4. James Mcdonald & Richard Michelfelder & Panayiotis Theodossiou, 2010. "Robust estimation with flexible parametric distributions: estimation of utility stock betas," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 375-387.
    5. Hansen, James V. & McDonald, James B. & Turley, Robert S., 2006. "Partially adaptive robust estimation of regression models and applications," European Journal of Operational Research, Elsevier, vol. 170(1), pages 132-143, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:22:y:2003:i:2:p:115-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.