IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v12y2008i1p83-115.html
   My bibliography  Save this article

Existence of Lévy term structure models

Author

Listed:
  • Damir Filipović
  • Stefan Tappe

Abstract

No abstract is available for this item.

Suggested Citation

  • Damir Filipović & Stefan Tappe, 2008. "Existence of Lévy term structure models," Finance and Stochastics, Springer, vol. 12(1), pages 83-115, January.
  • Handle: RePEc:spr:finsto:v:12:y:2008:i:1:p:83-115
    DOI: 10.1007/s00780-007-0054-4
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/10.1007/s00780-007-0054-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-007-0054-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    2. Robert Jarrow & Dilip Madan, 1995. "Option Pricing Using The Term Structure Of Interest Rates To Hedge Systematic Discontinuities In Asset Returns1," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 311-336, October.
    3. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    4. Jacek Jakubowski & Jerzy Zabczyk, 2007. "Exponential moments for HJM models with jumps," Finance and Stochastics, Springer, vol. 11(3), pages 429-445, July.
    5. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    6. Carl Chiarella & Oh Kang Kwon, 2001. "Forward rate dependent Markovian transformations of the Heath-Jarrow-Morton term structure model," Finance and Stochastics, Springer, vol. 5(2), pages 237-257.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    8. Ernst Eberlein & Jean Jacod & Sebastian Raible, 2005. "Lévy term structure models: No-arbitrage and completeness," Finance and Stochastics, Springer, vol. 9(1), pages 67-88, January.
    9. Michael Tehranchi, 2005. "A note on invariant measures for HJM models," Finance and Stochastics, Springer, vol. 9(3), pages 389-398, July.
    10. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure1," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72, January.
    11. Jeffrey, Andrew, 1995. "Single Factor Heath-Jarrow-Morton Term Structure Models Based on Markov Spot Interest Rate Dynamics," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(4), pages 619-642, December.
    12. Hiroshi Shirakawa, 1991. "Interest Rate Option Pricing With Poisson‐Gaussian Forward Rate Curve Processes," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 77-94, October.
    13. Carl Chiarella & Oh Kwon, 2003. "Finite Dimensional Affine Realisations of HJM Models in Terms of Forward Rates and Yields," Review of Derivatives Research, Springer, vol. 6(2), pages 129-155, May.
    14. Andrew Mark Jeffrey, 1995. "Single Factor Heath-Jarrow-Morton Term Structure Models Based on Markov Spot Interest Rate Dynamics," Yale School of Management Working Papers ysm46, Yale School of Management.
    15. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tappe, Stefan, 2010. "A note on stochastic integrals as L2-curves," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1141-1145, July.
    2. Stefan Tappe, 2019. "Compact embeddings for spaces of forward rate curves," Papers 1907.01437, arXiv.org.
    3. Eckhard Platen & Stefan Tappe, 2011. "Affine Realizations for Levy Driven Interest Rate Models with Real-World Forward Rate Dynamics," Research Paper Series 289, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Eckhard Platen & Steffan Tappe, 2015. "Real-World Forward Rate Dynamics With Affine Realizations," Published Paper Series 2015-7, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    5. Lijun Bo & Ying Jiao & Xuewei Yang, 2011. "Credit derivatives pricing with default density term structure modelled by L\'evy random fields," Papers 1112.2952, arXiv.org.
    6. Micha{l} Barski & Jerzy Zabczyk, 2015. "Forward rate models with linear volatilities," Papers 1512.05321, arXiv.org.
    7. Albeverio, S. & Mandrekar, V. & Rüdiger, B., 2009. "Existence of mild solutions for stochastic differential equations and semilinear equations with non-Gaussian Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 835-863, March.
    8. Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.
    9. Chiarolla, Maria B. & De Angelis, Tiziano, 2015. "Analytical pricing of American Put options on a Zero Coupon Bond in the Heath–Jarrow–Morton model," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 678-707.
    10. Francesca Biagini & Maximilian Härtel, 2014. "Behavior Of Long-Term Yields In A Lévy Term Structure," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 1-24.
    11. Zdzislaw Brzezniak & Tayfun Kok, 2016. "Stochastic Evolution Equations in Banach Spaces and Applications to Heath-Jarrow-Morton-Musiela Equation," Papers 1608.05814, arXiv.org.
    12. Stefan Tappe, 2019. "Existence of affine realizations for L\'evy term structure models," Papers 1907.02363, arXiv.org.
    13. Michał Barski & Jerzy Zabczyk, 2012. "Forward rate models with linear volatilities," Finance and Stochastics, Springer, vol. 16(3), pages 537-560, July.
    14. Jonas Alm & Filip Lindskog, 2015. "Valuation of Index-Linked Cash Flows in a Heath–Jarrow–Morton Framework," Risks, MDPI, vol. 3(3), pages 1-27, September.
    15. Lijun Bo & Ying Jiao & Xuewei Yang, 2014. "Credit derivatives pricing with default density term structure modelled by Lévy random fields," Post-Print hal-00651397, HAL.
    16. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2009. "Variance Optimal Hedging for continuous time processes with independent increments and applications," Papers 0912.0372, arXiv.org.
    17. Claudio Fontana & Giacomo Lanaro & Agatha Murgoci, 2024. "The geometry of multi-curve interest rate models," Papers 2401.11619, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damir Filipovi'c & Stefan Tappe, 2019. "Existence of L\'evy term structure models," Papers 1907.03561, arXiv.org.
    2. Stefan Tappe, 2019. "Existence of affine realizations for L\'evy term structure models," Papers 1907.02363, arXiv.org.
    3. Eckhard Platen & Stefan Tappe, 2011. "Affine Realizations for Levy Driven Interest Rate Models with Real-World Forward Rate Dynamics," Research Paper Series 289, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    5. Gapeev Pavel V. & Küchler Uwe, 2006. "On Markovian short rates in term structure models driven by jump-diffusion processes," Statistics & Risk Modeling, De Gruyter, vol. 24(2), pages 255-271, December.
    6. Gapeev, Pavel V. & Küchler, Uwe, 2003. "On Markovian Short Rates in Term Structure Models Driven by Jump-Diffusion Processes," SFB 373 Discussion Papers 2003,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    8. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    9. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    10. Björk, Tomas & Landén, Camilla & Svensson, Lars, 2002. "Finite dimensional Markovian realizations for stochastic volatility forward rate models," SSE/EFI Working Paper Series in Economics and Finance 498, Stockholm School of Economics, revised 07 May 2002.
    11. Stefan Tappe, 2019. "An alternative approach on the existence of affine realizations for HJM term structure models," Papers 1907.03256, arXiv.org.
    12. Tomas Björk & Lars Svensson, 2001. "On the Existence of Finite‐Dimensional Realizations for Nonlinear Forward Rate Models," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 205-243, April.
    13. Carl Chiarella & Christina Sklibosios, 2003. "A Class of Jump-Diffusion Bond Pricing Models within the HJM Framework," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 10(2), pages 87-127, September.
    14. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    15. Carl Chiarella & Christina Nikitopoulos Sklibosios & Erik Schlögl, 2007. "A Markovian Defaultable Term Structure Model With State Dependent Volatilities," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 155-202.
    16. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    17. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    18. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    19. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos-Sklibosios, 2010. "Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility," Research Paper Series 283, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.

    More about this item

    Keywords

    Forward curve spaces; Lévy term structure models; Stochastic integration in Hilbert spaces; Strong; weak and mild solutions of infinite dimensional SDEs; 91B28; 91B70; 60G51; 60H15; E43; G10;
    All these keywords.

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:12:y:2008:i:1:p:83-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.