IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v117y2013i3p545-560.html
   My bibliography  Save this article

Implications of simultaneously mitigating and adapting to climate change: initial experiments using GCAM

Author

Listed:
  • Katherine Calvin
  • Marshall Wise
  • Leon Clarke
  • Jae Edmonds
  • Page Kyle
  • Patrick Luckow
  • Allison Thomson

Abstract

Most research on future climate change discusses mitigation and impacts/adaptation separately. However, mitigation will have implications for impacts and adaptation. Similarly, impacts and adaptation will affect mitigation. This paper begins to explore these two veins of research simultaneously using an integrated assessment model. We begin by discussing the types of interactions one might expect by impact sector. Then, we develop a numerical experiment in the agriculture sector to illustrate the importance of considering mitigation, impacts, and adaptation at the same time. In our experiment, we find that climate change can reduce crop yields, resulting in an expansion of cropland to feed a growing population and a reduction in bioenergy production. These two effects, in combination, result in an increase in the cost of mitigation. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Katherine Calvin & Marshall Wise & Leon Clarke & Jae Edmonds & Page Kyle & Patrick Luckow & Allison Thomson, 2013. "Implications of simultaneously mitigating and adapting to climate change: initial experiments using GCAM," Climatic Change, Springer, vol. 117(3), pages 545-560, April.
  • Handle: RePEc:spr:climat:v:117:y:2013:i:3:p:545-560
    DOI: 10.1007/s10584-012-0650-y
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/10.1007/s10584-012-0650-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0650-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    2. Reilly, J. & Paltsev, S. & Felzer, B. & Wang, X. & Kicklighter, D. & Melillo, J. & Prinn, R. & Sarofim, M. & Sokolov, A. & Wang, C., 2007. "Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone," Energy Policy, Elsevier, vol. 35(11), pages 5370-5383, November.
    3. Shilpa Rao and Keywan Riahi, 2006. "The Role of Non-CO2 Greenhouse Gases in Climate Change Mitigation: Long-term Scenarios for the 21st Century," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 177-200.
    4. Silvana Mima & Patrick Criqui, 2009. "Assessment of the impacts under future climate change on the energy systems with the POLES model," Post-Print halshs-00452948, HAL.
    5. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    6. D.P. van Vuuren, B. Eickhout, P.L. Lucas and M.G.J. den Elzen, 2006. "Long-Term Multi-Gas Scenarios to Stabilise Radiative Forcing - Exploring Costs and Benefits Within an Integrated Assessment Framework," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 201-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    2. Hennessey, Ryan & Pittman, Jeremy & Morand, Annette & Douglas, Allan, 2017. "Co-benefits of integrating climate change adaptation and mitigation in the Canadian energy sector," Energy Policy, Elsevier, vol. 111(C), pages 214-221.
    3. Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
    4. Tianye Wang & Ekundayo Shittu, 2023. "Simulating the Impact of the U.S. Inflation Reduction Act on State-Level CO 2 Emissions: An Integrated Assessment Model Approach," Sustainability, MDPI, vol. 15(24), pages 1-16, December.
    5. Mohit Sharma & Vaibhav Chaturvedi & Pallav Purohit, 2017. "Long-term carbon dioxide and hydrofluorocarbon emissions from commercial space cooling and refrigeration in India: a detailed analysis within an integrated assessment modelling framework," Climatic Change, Springer, vol. 143(3), pages 503-517, August.
    6. Bakker, Craig & Zaitchik, Benjamin F. & Siddiqui, Sauleh & Hobbs, Benjamin F. & Broaddus, Elena & Neff, Roni A. & Haskett, Jonathan & Parker, Cindy L., 2018. "Shocks, seasonality, and disaggregation: Modelling food security through the integration of agricultural, transportation, and economic systems," Agricultural Systems, Elsevier, vol. 164(C), pages 165-184.
    7. Stolbova, Veronika & Monasterolo, Irene & Battiston, Stefano, 2018. "A Financial Macro-Network Approach to Climate Policy Evaluation," Ecological Economics, Elsevier, vol. 149(C), pages 239-253.
    8. Abigail Snyder & Katherine Calvin & Leon Clarke & James Edmonds & Page Kyle & Kanishka Narayan & Alan Di Vittorio & Stephanie Waldhoff & Marshall Wise & Pralit Patel, 2020. "The domestic and international implications of future climate for U.S. agriculture in GCAM," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
    2. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    3. Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Lena Höglund-Isaksson & Wilfried Winiwarter & Pallav Purohit & Fabian Wagner & Dan Bernie & Jason Lowe, 2017. "The Contribution of Non-CO 2 Greenhouse Gas Mitigation to Achieving Long-Term Temperature Goals," Energies, MDPI, vol. 10(5), pages 1-23, May.
    4. Hiroki Iwata & Keisuke Okada, 2014. "Greenhouse gas emissions and the role of the Kyoto Protocol," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(4), pages 325-342, October.
    5. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    6. Reilly, John M., 2012. "Green growth and the efficient use of natural resources," Energy Economics, Elsevier, vol. 34(S1), pages 85-93.
    7. repec:avg:wpaper:en7433 is not listed on IDEAS
    8. Samuel Carrara & Giacomo Marangoni, 2013. "Non-CO2 Greenhouse Gas Mitigation Modeling with Marginal Abatement Cost Curves: Technical Change, Emission Scenarios and Policy Costs," Working Papers 2013.110, Fondazione Eni Enrico Mattei.
    9. Maryse Labriet & Santosh Joshi & Marc Vielle & Philip Holden & Neil Edwards & Amit Kanudia & Richard Loulou & Frédéric Babonneau, 2015. "Worldwide impacts of climate change on energy for heating and cooling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1111-1136, October.
    10. Mathijs Harmsen & Detlef Vuuren & Maarten Berg & Andries Hof & Chris Hope & Volker Krey & Jean-Francois Lamarque & Adriana Marcucci & Drew Shindell & Michiel Schaeffer, 2015. "How well do integrated assessment models represent non-CO 2 radiative forcing?," Climatic Change, Springer, vol. 133(4), pages 565-582, December.
    11. Rose, Steven K. & Ahammad, Helal & Eickhout, Bas & Fisher, Brian & Kurosawa, Atsushi & Rao, Shilpa & Riahi, Keywan & van Vuuren, Detlef P., 2012. "Land-based mitigation in climate stabilization," Energy Economics, Elsevier, vol. 34(1), pages 365-380.
    12. A. Reisinger & P. Havlik & K. Riahi & O. Vliet & M. Obersteiner & M. Herrero, 2013. "Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture," Climatic Change, Springer, vol. 117(4), pages 677-690, April.
    13. Muhammad Rizwan Shahid & Abdul Wakeel & Wajid Ishaque & Samia Ali & Kamran Baksh Soomro & Muhammad Awais, 2021. "Optimizing different adaptive strategies by using crop growth modeling under IPCC climate change scenarios for sustainable wheat production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11310-11334, August.
    14. Adolf Stroombergen & Andy Reisinger, 2012. "The Macroeconomic Impact on New Zealand of Alternative GHG Exchange Rate Metrics," EcoMod2012 4140, EcoMod.
    15. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    16. Dale W. Henderson & Stephen W. Salant, 1976. "Market anticipations, government policy, and the price of gold," International Finance Discussion Papers 81, Board of Governors of the Federal Reserve System (U.S.).
    17. John Baffes & Cristina Savescu, 2014. "Monetary conditions and metal prices," Applied Economics Letters, Taylor & Francis Journals, vol. 21(7), pages 447-452, May.
    18. Siebert, Horst, 1982. "Das intertemporale Angebot eines ressourcenabbauenden Unternehmens," Open Access Publications from Kiel Institute for the World Economy 3563, Kiel Institute for the World Economy (IfW Kiel).
    19. Paul Welfens & Jens Perret & Deniz Erdem, 2010. "Global economic sustainability indicator: analysis and policy options for the Copenhagen process," International Economics and Economic Policy, Springer, vol. 7(2), pages 153-185, August.
    20. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    21. Eduardo Ley & Molly K. Macauley & Stephen W. Salant, "undated". "Spatially and intertemporally efficient waste management: The costs of interstate flow control," Working Papers 97-07, FEDEA.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:117:y:2013:i:3:p:545-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.