IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v65y1998i3p497-517..html
   My bibliography  Save this article

Semiparametric Estimation of the Intercept of a Sample Selection Model

Author

Listed:
  • Donald W. K. Andrews
  • Marcia M. A. Schafgans

Abstract

This paper provides a consistent and asymptotically normal estimator for the intercept of a semiparametrically estimated sample selection model. The estimator uses a decreasingly small fraction of all observations as the sample size goes to infinity, as in Heckman (1990). In the semiparametrics literature, estimation of the intercept has typically been subsumed in the nonparametric sample selection bias correction term. The estimation of the intercept, however, is important from an economic perspective. For instance, it permits one to determine the "wage gap" between unionized and nonunionized workers, decompose the wage differential between different socioeconomic groups (e.g. male-female and black-white), and evaluate the net benefits of a social programme.

Suggested Citation

  • Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 497-517.
  • Handle: RePEc:oup:restud:v:65:y:1998:i:3:p:497-517.
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/10.1111/1467-937X.00055
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:65:y:1998:i:3:p:497-517.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.