IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v67y2021i6p3447-3467.html
   My bibliography  Save this article

Learning-Based Robust Optimization: Procedures and Statistical Guarantees

Author

Listed:
  • L. Jeff Hong

    (School of Management and School of Data Science, Fudan University, Shanghai 200433, China)

  • Zhiyuan Huang

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109)

  • Henry Lam

    (Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)

Abstract

Robust optimization (RO) is a common approach to tractably obtain safeguarding solutions for optimization problems with uncertain constraints. In this paper, we study a statistical framework to integrate data into RO based on learning a prediction set using (combinations of) geometric shapes that are compatible with established RO tools and on a simple data-splitting validation step that achieves finite-sample nonparametric statistical guarantees on feasibility. We demonstrate how our required sample size to achieve feasibility at a given confidence level is independent of the dimensions of both the decision space and the probability space governing the stochasticity, and we discuss some approaches to improve the objective performances while maintaining these dimension-free statistical feasibility guarantees.

Suggested Citation

  • L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
  • Handle: RePEc:inm:ormnsc:v:67:y:2021:i:6:p:3447-3467
    DOI: 10.1287/mnsc.2020.3640
    as

    Download full text from publisher

    File URL: https://dx.doi.org/10.1287/mnsc.2020.3640
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2020.3640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruce L. Miller & Harvey M. Wagner, 1965. "Chance Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 13(6), pages 930-945, December.
    2. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    3. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    4. Algo Carè & Simone Garatti & Marco C. Campi, 2014. "FAST---Fast Algorithm for the Scenario Technique," Operations Research, INFORMS, vol. 62(3), pages 662-671, June.
    5. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    6. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    7. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    8. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    9. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.
    10. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    11. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    12. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    13. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    14. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    15. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
    16. Daniela Pucci de Farias & Benjamin Van Roy, 2004. "On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 462-478, August.
    17. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232, May.
    18. Zhaolin Hu & L. Hong & Liwei Zhang, 2013. "A smooth Monte Carlo approach to joint chance-constrained programs," IISE Transactions, Taylor & Francis Journals, vol. 45(7), pages 716-735.
    19. Henry Lam, 2019. "Recovering Best Statistical Guarantees via the Empirical Divergence-Based Distributionally Robust Optimization," Operations Research, INFORMS, vol. 67(4), pages 1090-1105, July.
    20. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    21. Xin Chen & Melvyn Sim & Peng Sun, 2007. "A Robust Optimization Perspective on Stochastic Programming," Operations Research, INFORMS, vol. 55(6), pages 1058-1071, December.
    22. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    23. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    24. G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
    25. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    26. Miguel A. Lejeune & Andrzej Ruszczyński, 2007. "An Efficient Trajectory Method for Probabilistic Production-Inventory-Distribution Problems," Operations Research, INFORMS, vol. 55(2), pages 378-394, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    2. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    3. Shao-Wei Lam & Tsan Sheng Ng & Melvyn Sim & Jin-Hwa Song, 2013. "Multiple Objectives Satisficing Under Uncertainty," Operations Research, INFORMS, vol. 61(1), pages 214-227, February.
    4. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    5. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    6. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    7. Postek, Krzysztof & Ben-Tal, A. & den Hertog, Dick & Melenberg, Bertrand, 2015. "Exact Robust Counterparts of Ambiguous Stochastic Constraints Under Mean and Dispersion Information," Other publications TiSEM d718e419-a375-4707-b206-e, Tilburg University, School of Economics and Management.
    8. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
    9. Postek, Krzysztof & Ben-Tal, A. & den Hertog, Dick & Melenberg, Bertrand, 2015. "Exact Robust Counterparts of Ambiguous Stochastic Constraints Under Mean and Dispersion Information," Discussion Paper 2015-030, Tilburg University, Center for Economic Research.
    10. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    11. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    12. Long He & Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2017. "Service Region Design for Urban Electric Vehicle Sharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 309-327, May.
    13. Wei Liu & Li Yang & Bo Yu, 2021. "KDE distributionally robust portfolio optimization with higher moment coherent risk," Annals of Operations Research, Springer, vol. 307(1), pages 363-397, December.
    14. Zhi Chen & Weijun Xie, 2021. "Regret in the Newsvendor Model with Demand and Yield Randomness," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4176-4197, November.
    15. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    16. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    17. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    18. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    19. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    20. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:67:y:2021:i:6:p:3447-3467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.