IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27yi2p466-481.html
   My bibliography  Save this article

Real-time macroeconomic forecasting with leading indicators: An empirical comparison

Author

Listed:
  • Heij, Christiaan
  • van Dijk, Dick
  • Groenen, Patrick J.F.

Abstract

This paper demonstrates that the Conference Board's Composite Leading Index (CLI) has significant real-time predictive ability for Industrial Production (IP) growth rates at horizons from one to six months ahead over the period 1989-2009. A popular but unrealistic analysis, which combines real-time data for CLI and final vintage data for IP as predictor variables, obscures the actual predictive content of the CLI, in the sense that in that case, the improvements in forecast accuracy relative to a univariate AR model are not significant. The CLI appears to be less useful for forecasting growth rates of the Conference Board's Composite Coincident Index (CCI) in real time, as a univariate AR model performs better. This result is mostly due to its disappointing performance during the first five years of the forecast period. The CLI may not be the best way of exploiting the information contained in the underlying individual leading indicator variables. The use of principal components instead of CLI leads to more accurate real-time forecasts for both IP and CCI growth rates.

Suggested Citation

  • Heij, Christiaan & van Dijk, Dick & Groenen, Patrick J.F., 2011. "Real-time macroeconomic forecasting with leading indicators: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 27(2), pages 466-481, April.
  • Handle: RePEc:eee:intfor:v:27:y::i:2:p:466-481
    as

    Download full text from publisher

    File URL: https://www.sciencedirect.com/science/article/pii/S0169-2070(10)00105-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ataman Ozyildirim & Brian Schaitkin & Victor Zarnowitz, 2010. "Business cycles in the euro area defined with coincident economic indicators and predicted with leading economic indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 6-28.
    2. S. Borağan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2‐3), pages 319-340, March.
    3. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    4. Pesaran, Hashem & Timmermann, Allan, 2005. "Real-Time Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 212-231, February.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    7. Maximo Camacho & Gabriel Perez-Quiros, 2002. "This is what the leading indicators lead," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(1), pages 61-80.
    8. Swanson, Norman R. & van Dijk, Dick, 2006. "Are Statistical Reporting Agencies Getting It Right? Data Rationality and Business Cycle Asymmetry," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 24-42, January.
    9. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    10. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    11. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    12. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    13. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 17, pages 961-982, Elsevier.
    14. Swanson Norman, 1996. "Forecasting Using First-Available Versus Fully Revised Economic Time-Series Data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-20, April.
    15. Wesley Clair Mitchell & Arthur F. Burns, 1938. "Statistical Indicators of Cyclical Revivals," NBER Books, National Bureau of Economic Research, Inc, number mitc38-1.
    16. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
    17. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    18. McGuckin, Robert H. & Ozyildirim, Ataman & Zarnowitz, Victor, 2007. "A More Timely and Useful Index of Leading Indicators," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 110-120, January.
    19. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    20. Marcellino, Massimiliano, 2006. "Leading Indicators," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 16, pages 879-960, Elsevier.
    21. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    22. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    23. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Knut Lehre Seip & Yunus Yilmaz & Michael Schröder, 2019. "Comparing Sentiment- and Behavioral-Based Leading Indexes for Industrial Production: When Does Each Fail?," Economies, MDPI, vol. 7(4), pages 1-18, October.
    2. Lise Pichette & Marie-Noëlle Robitaille, 2017. "Assessing the Business Outlook Survey Indicator Using Real-Time Data," Discussion Papers 17-5, Bank of Canada.
    3. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    4. Galdi, Giulio & Casarin, Roberto & Ferrari, Davide & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Nowcasting industrial production using linear and non-linear models of electricity demand," Energy Economics, Elsevier, vol. 126(C).
    5. Philip Hans Franses & Eva Janssens, 2019. "Spurious principal components," Applied Economics Letters, Taylor & Francis Journals, vol. 26(1), pages 37-39, January.
    6. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2014. "Evaluating Macroeconomic Forecasts: A Concise Review Of Some Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 195-208, April.
    7. Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
    8. Soh, Ann-Ni, 2020. "A Review on the Leading Indicator Approach towards Economic Forecasting," MPRA Paper 103854, University Library of Munich, Germany.
    9. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    10. Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
    11. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," MPRA Paper 39452, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heij, C. & van Dijk, D.J.C. & Groenen, P.J.F., 2009. "Macroeconomic forecasting with real-time data: an empirical comparison," Econometric Institute Research Papers EI 2009-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    3. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    4. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    5. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    6. Ciccarelli, Matteo & Altavilla, Carlo, 2007. "Information combination and forecast (st)ability evidence from vintages of time-series data," Working Paper Series 846, European Central Bank.
    7. Sinclair, Tara M., 2019. "Characteristics and implications of Chinese macroeconomic data revisions," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1108-1117.
    8. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    9. Andres Fernandez & Norman R. Swanson, 2009. "Real-time datasets really do make a difference: definitional change, data release, and forecasting," Working Papers 09-28, Federal Reserve Bank of Philadelphia.
    10. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    11. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    12. Valentina Raponi & Cecilia Frale, 2014. "Revisions in official data and forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 451-472, August.
    13. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    14. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    15. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    16. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    17. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    18. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    19. Michael P. Clements, 2014. "Anticipating Early Data Revisions to US GDP and the Effects of Releases on Equity Markets," ICMA Centre Discussion Papers in Finance icma-dp2014-06, Henley Business School, University of Reading.
    20. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:2:p:466-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.