IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v116y2024icp44-50.html
   My bibliography  Save this article

Inter-order relations between equivalence for Lp-quantiles of the Student's t distribution

Author

Listed:
  • Bignozzi, Valeria
  • Merlo, Luca
  • Petrella, Lea

Abstract

In the statistical and actuarial literature, Lp-quantiles, p∈[1,+∞), represent an important class of risk measures defined through an asymmetric p-power loss function that generalize the classical (L1-)quantiles. By exploiting inter-order relations between partial moments, we show that for a Student's t distribution with ν∈[1,+∞) degrees of freedom the Lν−j-quantile and the Lj+1-quantile always coincide for any j∈[0,ν−1]. For instance, for a Student's t distribution with 4 degrees of freedom, the L4-quantile and L1-quantile are equal and the same holds for the L3-quantile and L2-quantile; for this distribution, closed form expressions for the Lp-quantile, p=1,2,3,4 are provided. Explicit formulas for the central moments are also established. The usefulness of exact formulas is illustrated on real-world financial data.

Suggested Citation

  • Bignozzi, Valeria & Merlo, Luca & Petrella, Lea, 2024. "Inter-order relations between equivalence for Lp-quantiles of the Student's t distribution," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 44-50.
  • Handle: RePEc:eee:insuma:v:116:y:2024:i:c:p:44-50
    DOI: 10.1016/j.insmatheco.2024.02.001
    as

    Download full text from publisher

    File URL: https://www.sciencedirect.com/science/article/pii/S0167668724000222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    2. Li, Hengxin & Wang, Ruodu, 2023. "PELVE: Probability Equivalent Level of VaR and ES," Journal of Econometrics, Elsevier, vol. 234(1), pages 353-370.
    3. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    4. Chen, Zehua, 1996. "Conditional Lp-quantiles and their application to the testing of symmetry in non-parametric regression," Statistics & Probability Letters, Elsevier, vol. 29(2), pages 107-115, August.
    5. Bi, Hongwei & Huang, Rachel J. & Tzeng, Larry Y. & Zhu, Wei, 2019. "Higher-order Omega: A performance index with a decision-theoretic foundation," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 43-57.
    6. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "An expectile computation cookbook," TSE Working Papers 23-1458, Toulouse School of Economics (TSE).
    7. Koenker, Roger, 1992. "When Are Expectiles Percentiles?," Econometric Theory, Cambridge University Press, vol. 8(03), pages 423-424, September.
    8. Hengzhen Lu & Yingying Zhang & Ling Xiao & Gurjeet Dhesi, 2022. "A State-of-the-Art Fund Performance Index: Higher-Order Omega and Its Consistency with Almost Stochastic Dominance," JRFM, MDPI, vol. 15(10), pages 1-20, September.
    9. Laurent Gardes & Stéphane Girard & Gilles Stupfler, 2020. "Beyond tail median and conditional tail expectation: Extreme risk estimation using tail Lp‐optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 922-949, September.
    10. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    11. Arab, Idir & Lando, Tommaso & Oliveira, Paulo Eduardo, 2022. "Comparison of Lp-quantiles and related skewness measures," Statistics & Probability Letters, Elsevier, vol. 183(C).
    12. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    13. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    14. Fabio Bellini & Elena Di Bernardino, 2017. "Risk management with expectiles," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 487-506, May.
    15. Bernardi, Mauro & Bignozzi, Valeria & Petrella, Lea, 2017. "On the Lp-quantiles for the Student t distribution," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 77-83.
    16. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    17. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    18. Belkacem Abdous & Bruno Remillard, 1995. "Relating quantiles and expectiles under weighted-symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 371-384, June.
    19. Jones, M. C., 1994. "Expectiles and M-quantiles are quantiles," Statistics & Probability Letters, Elsevier, vol. 20(2), pages 149-153, May.
    20. Koenker, Roger, 1993. "When are Expectiles Percentiles?," Econometric Theory, Cambridge University Press, vol. 9(03), pages 526-527, June.
    21. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    22. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria Bignozzi & Luca Merlo & Lea Petrella, 2022. "Inter-order relations between moments of a Student $t$ distribution, with an application to $L_p$-quantiles," Papers 2209.12855, arXiv.org.
    2. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    3. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    4. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    5. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    6. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    7. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    8. Collin Philipps, 2022. "Interpreting Expectiles," Working Papers 2022-01, Department of Economics and Geosciences, US Air Force Academy.
    9. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    10. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "An expectile computation cookbook," TSE Working Papers 23-1458, Toulouse School of Economics (TSE).
    11. Tobias Fissler & Fangda Liu & Ruodu Wang & Linxiao Wei, 2024. "Elicitability and identifiability of tail risk measures," Papers 2404.14136, arXiv.org, revised Jun 2024.
    12. Samuel Drapeau & Mekonnen Tadese, 2019. "Dual Representation of Expectile based Expected Shortfall and Its Properties," Papers 1911.03245, arXiv.org.
    13. Samuel Drapeau & Mekonnen Tadese, 2019. "Relative Bound and Asymptotic Comparison of Expectile with Respect to Expected Shortfall," Papers 1906.09729, arXiv.org, revised Jun 2020.
    14. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    15. Stéphane Girard & Gilles Stupfler & Antoine Usseglio‐Carleve, 2022. "Nonparametric extreme conditional expectile estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 78-115, March.
    16. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    17. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    18. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    19. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    20. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.

    More about this item

    Keywords

    Expectiles; Generalized quantiles; Partial moments; Quantiles; Risk measures;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:116:y:2024:i:c:p:44-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.