IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v105y2022icp64-78.html
   My bibliography  Save this article

The location of a minimum variance squared distance functional

Author

Listed:
  • Landsman, Zinoviy
  • Shushi, Tomer

Abstract

In this paper, we introduce a novel multivariate functional that represents a position where the intrinsic uncertainty of a system of mutually dependent risks is maximally reduced. The proposed multivariate functional defines the location of the minimum variance of squared distance (LVS) for some n-variate vector of risks X. We compute the analytical representation of LVS(X), which consists of the location of the minimum expected squared distance, LES(X), covariance matrix A, and a matrix B of the multivariate central moments of the third order of X. From this representation it follows that LVS(X) coincides with LES(X) when X has a multivariate symmetric distribution, but differs from it in the non-symmetric case. As LES(X) is often considered a neutral multivariate risk measure, we show that LVS(X) also possesses the important properties of multivariate risk measures: translation invariance, positive homogeneity, and partial monotonicity. We also study the mean-variance approach based on the balanced sum of an expectation and a variance of the square of the aforementioned Euclidean distance and control for the closeness of LES(X) and LVS(X). The proposed theory and the results are distribution free, meaning that we do not assume any particular distribution for the random vector X. The results are demonstrated with real data of Danish fire losses.

Suggested Citation

  • Landsman, Zinoviy & Shushi, Tomer, 2022. "The location of a minimum variance squared distance functional," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 64-78.
  • Handle: RePEc:eee:insuma:v:105:y:2022:i:c:p:64-78
    DOI: 10.1016/j.insmatheco.2022.03.006
    as

    Download full text from publisher

    File URL: https://www.sciencedirect.com/science/article/pii/S0167668722000336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.

    More about this item

    Keywords

    Measure of uncertainty; Variance of squared distance; Skewness; Euclidean distance; Controlling of expected squared distance;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:105:y:2022:i:c:p:64-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.