IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v237y2023i1s0304407623001562.html
   My bibliography  Save this article

Identification of mixtures of dynamic discrete choices

Author

Listed:
  • Higgins, Ayden
  • Jochmans, Koen

Abstract

This paper provides new identification results for finite mixtures of Markov processes. Our arguments yield identification from knowledge of the cross-sectional distribution of three (or more) effective time-series observations under simple conditions. We explain how our approach and results are different from those in previous work by Kasahara and Shimotsu (2009) and Hu and Shum (2012). Most notably, outside information, such as monotonicity restrictions that link conditional distributions to latent types, is not needed.

Suggested Citation

  • Higgins, Ayden & Jochmans, Koen, 2023. "Identification of mixtures of dynamic discrete choices," Journal of Econometrics, Elsevier, vol. 237(1).
  • Handle: RePEc:eee:econom:v:237:y:2023:i:1:s0304407623001562
    DOI: 10.1016/j.jeconom.2023.04.006
    as

    Download full text from publisher

    File URL: https://www.sciencedirect.com/science/article/pii/S0304407623001562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2023.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Le-Yu, 2017. "Identification Of Discrete Choice Dynamic Programming Models With Nonparametric Distribution Of Unobservables," Econometric Theory, Cambridge University Press, vol. 33(3), pages 551-577, June.
    2. Thierry Magnac & David Thesmar, 2002. "Identifying Dynamic Discrete Decision Processes," Econometrica, Econometric Society, vol. 70(2), pages 801-816, March.
    3. T. Anderson, 1954. "On estimation of parameters in latent structure analysis," Psychometrika, Springer;The Psychometric Society, vol. 19(1), pages 1-10, March.
    4. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    5. Nathaniel Baum-Snow & Ronni Pavan, 2012. "Understanding the City Size Wage Gap," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(1), pages 88-127.
    6. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza-Rodrigues, 2020. "Linear IV Regression Estimators for Structural Dynamic Discrete Choice Models," Working Papers tecipa-674, University of Toronto, Department of Economics.
    7. Browning, Martin & Carro, Jesus M., 2014. "Dynamic binary outcome models with maximal heterogeneity," Journal of Econometrics, Elsevier, vol. 178(2), pages 805-823.
    8. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    9. Peter Hall & Amnon Neeman & Reza Pakyari & Ryan Elmore, 2005. "Nonparametric inference in multivariate mixtures," Biometrika, Biometrika Trust, vol. 92(3), pages 667-678, September.
    10. Aviv Nevo & John L. Turner & Jonathan W. Williams, 2016. "Usage‐Based Pricing and Demand for Residential Broadband," Econometrica, Econometric Society, vol. 84, pages 411-443, March.
    11. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    12. Keane, Michael P & Wolpin, Kenneth I, 1997. "The Career Decisions of Young Men," Journal of Political Economy, University of Chicago Press, vol. 105(3), pages 473-522, June.
    13. A. Norets & X. Tang, 2014. "Semiparametric Inference in Dynamic Binary Choice Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1229-1262.
    14. Gregory S. Crawford & Matthew Shum, 2005. "Uncertainty and Learning in Pharmaceutical Demand," Econometrica, Econometric Society, vol. 73(4), pages 1137-1173, July.
    15. Marc Henry & Yuichi Kitamura & Bernard Salanié, 2014. "Partial identification of finite mixtures in econometric models," Quantitative Economics, Econometric Society, vol. 5, pages 123-144, March.
    16. repec:hal:spmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    17. Yang Wang, 2014. "Dynamic Implications of Subjective Expectations: Evidence from Adult Smokers," American Economic Journal: Applied Economics, American Economic Association, vol. 6(1), pages 1-37, January.
    18. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    19. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, January.
    20. Zvi Eckstein & Kenneth I. Wolpin, 1999. "Why Youths Drop Out of High School: The Impact of Preferences, Opportunities, and Abilities," Econometrica, Econometric Society, vol. 67(6), pages 1295-1340, November.
    21. James J. Heckman, 1981. "Heterogeneity and State Dependence," NBER Chapters, in: Studies in Labor Markets, pages 91-140, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen Jochmans, 2024. "Nonparametric identification and estimation of stochastic block models from many small networks," Post-Print hal-04672521, HAL.
    2. Jochmans, Koen, 2024. "Nonparametric identification and estimation of stochastic block models from many small networks," Journal of Econometrics, Elsevier, vol. 242(2).
    3. Jochmans, Koen & Higgins, Ayden, 2022. "Learning Markov Processes with Latent Variables From Longitudinal Data," TSE Working Papers 22-1366, Toulouse School of Economics (TSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza‐Rodrigues, 2021. "Identification of counterfactuals in dynamic discrete choice models," Quantitative Economics, Econometric Society, vol. 12(2), pages 351-403, May.
    2. Kalouptsidi, Myrto & Scott, Paul & Souza-Rodrigues, Edouardo, 2015. "Identification of Counterfactuals and Payoffs in Dynamic Discrete Choice with an Application to Land Use," TSE Working Papers 15-596, Toulouse School of Economics (TSE).
    3. Manuel Arellano & Stéphane Bonhomme, 2017. "Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 471-496, September.
    4. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza-Rodrigues, 2015. "Identification of Counterfactuals in Dynamic Discrete Choice Models," NBER Working Papers 21527, National Bureau of Economic Research, Inc.
    5. repec:hal:spmain:info:hdl:2441/7svo6civd6959qvmn4965cth1d is not listed on IDEAS
    6. repec:spo:wpmain:info:hdl:2441/7svo6civd6959qvmn4965cth1d is not listed on IDEAS
    7. Manuel Arellano & Stéphane Bonhomme, 2017. "Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models," Working Papers wp2018_1703, CEMFI.
    8. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    9. Hanming Fang & Yang Wang, 2015. "Estimating Dynamic Discrete Choice Models With Hyperbolic Discounting, With An Application To Mammography Decisions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 565-596, May.
    10. Arcidiacono, Peter & Miller, Robert A., 2020. "Identifying dynamic discrete choice models off short panels," Journal of Econometrics, Elsevier, vol. 215(2), pages 473-485.
    11. Komarova, Tatiana & Sanches, Fábio Adriano & Silva Junior, Daniel & Srisuma, Sorawoot, 2018. "Joint analysis of the discount factor and payoff parameters in dynamic discrete choice games," LSE Research Online Documents on Economics 86858, London School of Economics and Political Science, LSE Library.
    12. Jochmans, Koen & Higgins, Ayden, 2022. "Learning Markov Processes with Latent Variables From Longitudinal Data," TSE Working Papers 22-1366, Toulouse School of Economics (TSE).
    13. Hiroyuki Kasahara & Katsumi Shimotsu, 2006. "Nonparametric Identification And Estimation Of Finite Mixture Models Of Dynamic Discrete Choices," Working Paper 1092, Economics Department, Queen's University.
    14. Jaap H. Abbring, 2010. "Identification of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 367-394, September.
    15. Hu Yingyao & Shum Matthew & Tan Wei & Xiao Ruli, 2017. "A Simple Estimator for Dynamic Models with Serially Correlated Unobservables," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-16, January.
    16. An, Yonghong & Hu, Yingyao & Xiao, Ruli, 2021. "Dynamic decisions under subjective expectations: A structural analysis," Journal of Econometrics, Elsevier, vol. 222(1), pages 645-675.
    17. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    18. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    19. Khai Chiong & Alfred Galichon & Matt Shum, 2015. "Duality in Dynamic Discrete Choice Models," Post-Print hal-03568184, HAL.
    20. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    21. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    22. Kalouptsidi, Myrto & Souza-Rodrigues, Eduardo & Scott, Paul, 2017. "Identification of Counterfactuals in Dynamic Discrete Choice Models," CEPR Discussion Papers 12470, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    Discrete choice; Heterogeneity; Markov process; Mixture; State dependence;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:237:y:2023:i:1:s0304407623001562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.