IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i4p1066-1079.html
   My bibliography  Save this article

A robust Bayesian approach to null intercept measurement error model with application to dental data

Author

Listed:
  • Ghosh, Pulak
  • Bayes, C.L.
  • Lachos, V.H.

Abstract

Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial.

Suggested Citation

  • Ghosh, Pulak & Bayes, C.L. & Lachos, V.H., 2009. "A robust Bayesian approach to null intercept measurement error model with application to dental data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1066-1079, February.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1066-1079
    as

    Download full text from publisher

    File URL: https://www.sciencedirect.com/science/article/pii/S0167-9473(08)00458-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reiko Aoki & Hereno Bolfarine & Julio Singer, 2001. "Null intercept measurement error regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 441-457, December.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    4. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    5. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    6. Reiko Aoki & Jorge Achcar & Heleno Bolfarine & Julio Singer, 2003. "Bayesian analysis of null intercept errors-in-variables regression for pretest/post-test data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(1), pages 3-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Rendao Ye & Bingni Fang & Weixiao Du & Kun Luo & Yiting Lu, 2022. "Bootstrap Tests for the Location Parameter under the Skew-Normal Population with Unknown Scale Parameter and Skewness Parameter," Mathematics, MDPI, vol. 10(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Lachos & Vicente Cancho & Reiko Aoki, 2010. "Bayesian analysis of skew-t multivariate null intercept measurement error model," Statistical Papers, Springer, vol. 51(3), pages 531-545, September.
    2. V. G. Cancho & Reiko Aoki & V. H. Lachos, 2008. "Bayesian analysis for a skew extension of the multivariate null intercept measurement error model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1239-1251.
    3. De la Cruz, Rolando, 2008. "Bayesian non-linear regression models with skew-elliptical errors: Applications to the classification of longitudinal profiles," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 436-449, December.
    4. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    5. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    6. Adelchi Azzalini, 2012. "Selection models under generalized symmetry settings," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 737-750, August.
    7. Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    8. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    9. Abe, Toshihiro & Fujisawa, Hironori & Kawashima, Takayuki & Ley, Christophe, 2021. "EM algorithm using overparameterization for the multivariate skew-normal distribution," Econometrics and Statistics, Elsevier, vol. 19(C), pages 151-168.
    10. Maria Rosaria Ferrante & Silvia Pacei, 2017. "Small domain estimation of business statistics by using multivariate skew normal models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1057-1088, October.
    11. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2013. "The centred parameterization and related quantities of the skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 73-90.
    12. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    13. Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
    14. Jorge M. Arevalillo & Hilario Navarro, 2021. "Skewness-Kurtosis Model-Based Projection Pursuit with Application to Summarizing Gene Expression Data," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    15. Hok Shing Kwong & Saralees Nadarajah, 2022. "A New Robust Class of Skew Elliptical Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1669-1691, September.
    16. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    17. Zhongwei Zhang & Reinaldo B. Arellano‐Valle & Marc G. Genton & Raphaël Huser, 2023. "Tractable Bayes of skew‐elliptical link models for correlated binary data," Biometrics, The International Biometric Society, vol. 79(3), pages 1788-1800, September.
    18. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Arevalillo, Jorge M. & Navarro, Hilario, 2015. "A note on the direction maximizing skewness in multivariate skew-t vectors," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 328-332.
    20. Jorge M. Arevalillo & Hilario Navarro, 2020. "Data projections by skewness maximization under scale mixtures of skew-normal vectors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 435-461, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1066-1079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.