IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v56y2000i1p118-124.html
   My bibliography  Save this article

Substantial Gains in Bias Reduction from Matching with a Variable Number of Controls

Author

Listed:
  • Kewei Ming
  • Paul R. Rosenbaum

Abstract

No abstract is available for this item.

Suggested Citation

  • Kewei Ming & Paul R. Rosenbaum, 2000. "Substantial Gains in Bias Reduction from Matching with a Variable Number of Controls," Biometrics, The International Biometric Society, vol. 56(1), pages 118-124, March.
  • Handle: RePEc:bla:biomet:v:56:y:2000:i:1:p:118-124
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/10.1111/j.0006-341X.2000.00118.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sameer K Deshpande & Raiden B Hasegawa & Jordan Weiss & Dylan S Small, 2020. "The association between adolescent football participation and early adulthood depression," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-14, March.
    2. Bo Lu, 2005. "Propensity Score Matching with Time-Dependent Covariates," Biometrics, The International Biometric Society, vol. 61(3), pages 721-728, September.
    3. Jochen Kluve & Boris Augurzky, 2005. "Assessing the performance of matching algorithms when selection into treatment is strong," RWI Discussion Papers 0021, Rheinisch-Westfälisches Institut für Wirtschaftsforschung.
    4. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    5. repec:zbw:rwidps:0021 is not listed on IDEAS
    6. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    7. Howard Birnbaum & Crystal Pike & Ritesh Banerjee & Tracy Waldman & Mary Cifaldi, 2012. "Changes in Utilization and Costs for Patients with Rheumatoid Arthritis, 1997 to 2006," PharmacoEconomics, Springer, vol. 30(4), pages 323-336, April.
    8. Colin B. Fogarty & Pixu Shi & Mark E. Mikkelsen & Dylan S. Small, 2017. "Randomization Inference and Sensitivity Analysis for Composite Null Hypotheses With Binary Outcomes in Matched Observational Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 321-331, January.
    9. Michela Bia & Roberto Leombruni & Pierre-Jean Messe, 2009. "Young in-Old out: a new evaluation based on Generalized Propensity Score," LABORatorio R. Revelli Working Papers Series 93, LABORatorio R. Revelli, Centre for Employment Studies.
    10. Zhenzhen Xu & John D. Kalbfleisch, 2013. "Repeated Randomization and Matching in Multi-Arm Trials," Biometrics, The International Biometric Society, vol. 69(4), pages 949-959, December.
    11. Jochen Kluve & Boris Augurzky, 2007. "Assessing the performance of matching algorithms when selection into treatment is strong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 533-557.
    12. Li, Libo & Yu, Huan & Kunc, Martin, 2024. "The impact of forum content on data science open innovation performance: A system dynamics-based causal machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    13. Paul R. Rosenbaum, 2013. "Impact of Multiple Matched Controls on Design Sensitivity in Observational Studies," Biometrics, The International Biometric Society, vol. 69(1), pages 118-127, March.
    14. Phuong Nguyen-Hoang, 2012. "Fiscal effects of budget referendums: evidence from New York school districts," Public Choice, Springer, vol. 150(1), pages 77-95, January.
    15. Sylvia Brandt & Sara Gale & Ira Tager, 2012. "The value of health interventions: evaluating asthma case management using matching," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2245-2263, June.
    16. Augurzky, Boris & Kluve, Jochen, 2004. "Assessing the performance of matching algorithms when selection into treatment is strong," RWI Discussion Papers 21, RWI - Leibniz-Institut für Wirtschaftsforschung.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:56:y:2000:i:1:p:118-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.