Ugrás a tartalomhoz

Majdnem prímek

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

A számelméletben egy természetes szám majdnem prím (almost prime), ha létezik olyan K konstans, hogy a számnak legfeljebb K prímtényezője van.[1][2] Egy n majdnem prímet jelölje Pr, amennyiben n prímtényezőinek száma multiplicitással számolva legfeljebb r.[3] Egy természetes számot akkor nevezünk k-majdnem prímnek, ha pontosan k prímtényezővel rendelkezik, multiplicitással számolva. Formálisabban, egy n természetes szám akkor és csak akkor k-majdnem prím, ha ν(n) = k, ahol ν(n), azaz nű(n) az n prímtényezős felbontásában található prímek száma, multiplicitással számolva:

Egy természetes szám tehát akkor prím, ha 1-majdnem prím és akkor félprím, ha 2-majdnem prím. A k-majdnem prímek halmazát általában Pk jelöli. A legkisebb k-majdnem prím mindig 2k. Az első néhány k-majdnem prím:

k k-majdnem prímek OEIS-sorozat
1 2, 3, 5, 7, 11, 13, 17, 19, … A000040
2 4, 6, 9, 10, 14, 15, 21, 22, … A001358
3 8, 12, 18, 20, 27, 28, 30, … A014612
4 16, 24, 36, 40, 54, 56, 60, … A014613
5 32, 48, 72, 80, 108, 112, … A014614
6 64, 96, 144, 160, 216, 224, … A046306
7 128, 192, 288, 320, 432, 448, … A046308
8 256, 384, 576, 640, 864, 896, … A046310
9 512, 768, 1152, 1280, 1728, … A046312
10 1024, 1536, 2304, 2560, … A046314
11 2048, 3072, 4608, 5120, … A069272
12 4096, 6144, 9216, 10240, … A069273
13 8192, 12288, 18432, 20480, … A069274
14 16384, 24576, 36864, 40960, … A069275
15 32768, 49152, 73728, 81920, … A069276
16 65536, 98304, 147456, … A069277
17 131072, 196608, 294912, … A069278
18 262144, 393216, 589824, … A069279
19 524288, 786432, 1179648, … A069280
20 1048576, 1572864, 2359296, … A069281

Az n-nél nem nagyobb, legfeljebb k (nem feltétlenül különböző) prímtényezővel rendelkező πk(n) egész számok száma aszimptotikusan:[4]

ami Landau eredménye. Lásd még: Hardy–Ramanujan-tétel.

Jegyzetek

[szerkesztés]
  1. Handbook of Number Theory I. Springer, 316. o. (2006). ISBN 978-1-4020-4215-7 
  2. Rényi, Alfréd A. (1948). „On the representation of an even number as the sum of a single prime and single almost-prime number” (orosz nyelven). Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 12 (1), 57–78. o. 
  3. Heath-Brown, D. R. (1978. május 1.). „Almost-primes in arithmetic progressions and short intervals”. Mathematical Proceedings of the Cambridge Philosophical Society 83 (3), 357–375. o. DOI:10.1017/S0305004100054657. 
  4. Tenenbaum, Gerald. Introduction to Analytic and Probabilistic Number Theory. Cambridge University Press (1995. november 24.). ISBN 0-521-41261-7 

További információk

[szerkesztés]