Skip to content

Learning Robust and Accurate Non-parametric 3D Face Reconstruction from Pseudo 2D&3D Pairs (AAAI 2023 Oral)

Notifications You must be signed in to change notification settings

zhuhao-nju/rafare

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RAFaRe

This is the official repository of ''Learning Robust and Accurate Non-parametric 3D Face Reconstruction from Pseudo 2D&3D Pairs'', AAAI 2023 (Oral). [Project Page] [arXiv]

Environment

The project is tested on Ubuntu, Anaconda with Python 3.9.

conda create -n rafare python=3.9
conda activate rafare
conda install numpy==1.23.5 -y
conda install scikit-image==0.19.3 -y
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 -c pytorch -y
conda install tqdm==4.64.1 -y
conda install -c conda-forge opencv==4.7.0 -y
conda install -c conda-forge trimesh==3.18.3 -y
conda install -c conda-forge einops==0.6.0 -y
conda install -c conda-forge pyrender==0.1.45 -y
conda install -c conda-forge addict==2.4.0 -y
conda install -c conda-forge yapf==0.32.0 -y

Pretrained Model

Download from NJU drive:

./checkpoints/download_model_njudrive.sh

Or download from Google drive:

./checkpoints/download_model_googledrive.sh

Run Testing

A pre-processing is required to crop the image to be square. Our method is not sensitive to the position of the face, and the size of the face should be 50%-90% of the image size.

Test a single image:

python3 ./tools/test_image_single.py --input_fn ./data/test_imgs/1.png --num_samples 180000 # for 24G GPU memory
python3 ./tools/test_image_single.py --input_fn ./data/test_imgs/1.png --num_samples 80000 # for 12G GPU memory

Test multiple images in a folder:

python3 ./tools/test_image_batch.py --input_dir ./data/test_imgs/ --num_samples 80000 # for 24 GPU memory
python3 ./tools/test_image_batch.py --input_dir ./data/test_imgs/ --num_samples 50000 # for 12 GPU memory

Test a video:

python3 ./tools/test_video.py --input_fn ./data/test_videos/baijia.mp4 --num_samples 80000 # for 24 GPU memory
python3 ./tools/test_video.py --input_fn ./data/test_videos/baijia.mp4 --num_samples 50000 # for 12 GPU memory

Running time:

Method Time(per image/frame)
test_imgae_single 19.25s
test_image_batch 15.09s
test_video 14.97s

Reference

@inproceedings{guo2023rafare,
  title={RAFaRe: Learning Robust and Accurate Non-parametric 3D Face Reconstruction from Pseudo 2D&3D Pairs},
  author={Guo, Longwei and Zhu, Hao and Lu, Yuanxun and Wu, Menghua and Cao, Xun},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2023}
}

Acknowledge

The project depends heavily on Open-PIFuHD, PIFuHD, FaceScape, Pix2PixHD, and Face-Parsing. Thanks for sharing these cool projects.

About

Learning Robust and Accurate Non-parametric 3D Face Reconstruction from Pseudo 2D&3D Pairs (AAAI 2023 Oral)

Resources

Stars

Watchers

Forks