Skip to content
/ POCKET Public

PriOritizing the Candidate genes by incorporating information of Knowledge-based gene sets, Effects of variants, GWAS and TWAS

License

Notifications You must be signed in to change notification settings

zhaouu/POCKET

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

POCKET

PriOritizing the Candidate genes by incorporating information of Knowledge-based gene sets, Effects of variants, GWAS and TWAS

Multi-omics datasets were used to prioritize the candidate gene in GWAS QTL regions, and a comprehensive scoring system was established. First, based on variation effect annotated with SNP effector (Cingolani et al., 2012) and GWAS P value of the variation, we used a Min-Max scaled score to evaluate the effects of variation in gene region. Second, based on TWAS P value and cis-eQTL results, we evaluated the gene expression effect in candidate region. Third, we used variations in gene region and upstream region of gene to categorize the gene into different haplotypes and calculated the haplotype-based association score. Fourth, we predicted the potential probability of whether the genes related to the phenotype or not, depends on 8,283 features which we collected from four datasets: (i) GO category, (ii) InterPro protein classification, (iii) gene expression datasets from Lu et al. (Lu et al., 2018), (iv) DEGs of known SOC related mutant or OE lines, (v) ICA ccomponents identified from population transcriptome in 20 and 40 DAF, then we used SVM to predict the gene function. Lastly, we summarized the scores from four processes to determine which genes were more likely effects the phenotype.

Note: we tested the POCKET in Rapeseed and Rice. And we assume that POCKET can be used for other species.

Requirements

We tested the code on linux platform. Requirements are:

GCC C and C++ compiler (gcc, g++)

Python >= 3.6

pip for installing python packages

Numpy

Scipy

scikit-learn

limix

pandas

Joblib

plink software

Installation

If all the requirements are met, you can install the POCKET library with the command:

python3 setup.py build install --user

or using

pip install gene_pocket

Examples

You can follow the example to use the POCKET.

Citation

Tang, S., Zhao, H., Lu, S., Yu, L., Zhang, G., Zhang, Y., . . . Guo, L. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Molecular Plant. doi:10.1016/j.molp.2020.12.003

About

PriOritizing the Candidate genes by incorporating information of Knowledge-based gene sets, Effects of variants, GWAS and TWAS

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages