Skip to content

yuexiayiren159/yolov3

 
 

Repository files navigation

 

CI CPU testing

BRANCH NOTICE: The ultralytics/yolov3 repository is now divided into two branches:

$ git clone https://github.com/ultralytics/yolov3  # master branch (default)
$ git clone -b archive https://github.com/ultralytics/yolov3  # archive branch

** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from google/automl at batch size 8.

Pretrained Checkpoints

Model APval APtest AP50 SpeedGPU FPSGPU params FLOPS
YOLOv3 43.3 43.3 63.0 4.8ms 208 61.9M 156.4B
YOLOv3-SPP 44.3 44.3 64.6 4.9ms 204 63.0M 157.0B
YOLOv3-tiny 17.6 34.9 34.9 1.7ms 588 8.9M 13.3B

** APtest denotes COCO test-dev2017 server results, all other AP results denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or TTA. Reproduce mAP by python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
** SpeedGPU averaged over 5000 COCO val2017 images using a GCP n1-standard-16 V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. Reproduce speed by python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). ** Test Time Augmentation (TTA) runs at 3 image sizes. Reproduce TTA by python test.py --data coco.yaml --img 832 --iou 0.65 --augment

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

$ pip install -r requirements.txt

Tutorials

Environments

YOLOv3 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Inference

detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv3 release and saving results to runs/detect.

$ python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            rtsp:https://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                            rtmp:https://192.168.1.105/live/test  # rtmp stream
                            https://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

To run inference on example images in data/images:

$ python detect.py --source data/images --weights yolov3.pt --conf 0.25

Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov3.pt'])
Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB)

Downloading https://github.com/ultralytics/yolov3/releases/download/v1.0/yolov3.pt to yolov3.pt... 100% 118M/118M [00:05<00:00, 24.2MB/s]

Fusing layers... 
Model Summary: 261 layers, 61922845 parameters, 0 gradients
image 1/2 /content/yolov3/data/images/bus.jpg: 640x480 4 persons, 1 buss, Done. (0.014s)
image 2/2 /content/yolov3/data/images/zidane.jpg: 384x640 2 persons, 3 ties, Done. (0.014s)
Results saved to runs/detect/exp
Done. (0.133s)

PyTorch Hub

To run batched inference with YOLO3 and PyTorch Hub:

import torch
from PIL import Image

# Model
model = torch.hub.load('ultralytics/yolov3', 'yolov3', pretrained=True).autoshape()  # for PIL/cv2/np inputs and NMS

# Images
img1 = Image.open('zidane.jpg')
img2 = Image.open('bus.jpg')
imgs = [img1, img2]  # batched list of images

# Inference
prediction = model(imgs, size=640)  # includes NMS

Training

Download COCO and run command below. Training times for YOLOv3/YOLOv3-SPP/YOLOv3-tiny are 6/6/2 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ python train.py --data coco.yaml --cfg yolov3.yaml --weights '' --batch-size 24
                                         yolov3-spp.yaml                       24
                                         yolov3-tiny.yaml                      64

Citation

DOI

About Us

Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:

  • Cloud-based AI systems operating on hundreds of HD video streams in realtime.
  • Edge AI integrated into custom iOS and Android apps for realtime 30 FPS video inference.
  • Custom data training, hyperparameter evolution, and model exportation to any destination.

For business inquiries and professional support requests please visit us at https://www.ultralytics.com.

Contact

Issues should be raised directly in the repository. For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at [email protected].

About

YOLOv3 in PyTorch > ONNX > CoreML > TFLite

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 96.4%
  • Shell 2.5%
  • Dockerfile 1.1%