Skip to content
/ LRD Public

The official implementation for Sequential Recommendation with Latent Relations based on Large Language Model

License

Notifications You must be signed in to change notification settings

ysh-1998/LRD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LRD

This is the official implementation for Sequential Recommendation with Latent Relations based on Large Language Model

LRD

Getting Started

  1. Install Anaconda with Python == 3.7
  2. Clone the repository and install requirements
git clone https://github.com/ysh-1998/LRD.git
  1. Install requirements and step into the src folder
cd LRD
pip install -r requirements.txt
cd src
  1. Run model on the build-in dataset
# RCF
python main.py --model_name RCF --emb_size 64 --include_attr 1 --include_val 1 --lr 1e-4 --l2 1e-6 --num_heads 4 --num_layers 5 --gamma -1 --history_max 20 --dataset Office --epoch 200 --gpu 0
# RCF_LRD
python main.py --model_name RCFPlus --emb_size 64 --include_attr 1 --include_val 1 --lr 1e-4 --l2 1e-6 --num_heads 4 --num_layers 5 --gamma -1 --history_max 20 --dataset Office --include_lrd 1 --epoch 200 --gpu 0
# KDA
python main.py --model_name KDA --emb_size 64 --include_attr 1 --include_val 1 --freq_rand 1 --lr 1e-3 --l2 1e-6 --num_heads 4 --num_layers 5 --gamma -1 --history_max 20 --dataset Office --epoch 200 --gpu 0
# KDA_LRD
python main.py --model_name KDAPlus --emb_size 64 --include_attr 1 --include_val 1 --freq_rand 1 --lr 1e-3 --l2 1e-6 --num_heads 4 --num_layers 5 --gamma -1 --history_max 20 --dataset Office --include_lrd 1 --epoch 200 --gpu 0

About

The official implementation for Sequential Recommendation with Latent Relations based on Large Language Model

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published