By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao.
This pytorch implementation is a two-stage improved version of our paper "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks", published in ICCV 2021.
Following this repository,
- Download the ImageNet dataset from https://www.image-net.org.
- Then move validation images to labeled subfolders, using the following script.
- python3, pytorch 1.4.0, torchvision 0.5.0
(1) Step1: binarizing activations (or you can omit this step by using our Step1 model checkpoint_ba.pth.tar
),
- Change directory to
./step1
, - Run the folowing script,
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data=path/to/ILSVRC2012/ --batch_size=512 --learning_rate=1e-3 --epochs=256 --weight_decay=1e-5
(2) Step2: binarizing weights + activations,
- Change directory to
./step2
, - Create new folder
./models
and copycheckpoint_ba.pth.tar
(obtained from Step1) to./models
, - Run the folowing script,
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data=path/to/ILSVRC2012/ --batch_size=512 --learning_rate=1e-3 --epochs=256 --weight_decay=0 --bit-num=5
- Comment: --bit-num=5 corresponds to 0.56 bit (bit-num indicates tau in the paper).
This implementation is based on ResNet-18 of ReActNet.
Bit-Width | Top1-Acc | Top5-Acc | #Params | Bit-OPs | Model & Log |
---|---|---|---|---|---|
1W / 1A | 65.7% | 86.3% | 10.99Mbit | 1.677G | Google Drive |
0.67W / 1A | 63.4% | 84.5% | 7.324Mbit | 0.883G | Google Drive |
0.56W / 1A | 62.1% | 83.8% | 6.103Mbit | 0.501G | Google Drive |
0.44W / 1A | 60.7% | 82.7% | 4.882Mbit | 0.297G | Google Drive |
If you find our code useful for your research, please consider citing:
@inproceedings{wang2021snn,
title={Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks},
author={Wang, Yikai and Yang, Yi and Sun, Fuchun and Yao, Anbang},
booktitle={International Conference on Computer Vision (ICCV)},
year={2021}
}
SNN is released under MIT License.