Skip to content
/ ISM2017 Public

Reproducible research code for the experiments presented in our article "Kara1k: a karaoke dataset for cover song identification and singing voice analysis" published at IEEE ISM 2017

License

Notifications You must be signed in to change notification settings

ybayle/ISM2017

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IEEE ISM 2017

Reproducible research code for the article published to IEEE ISM 2017 conference:

@inproceedings{Bayle2017,
  author = {Bayle, Yann and Maršík, Ladislav and Rusek, Martin and Robine, Matthias and Hanna, Pierre and Slaninová, Kateřina and Martinovič, Jan and Pokorný, Jaroslav},
  booktitle = {Proceedings of the 19th IEEE International Symposium on Multimedia},
  link = {https://ism2017.asia.edu.tw/december-12/},
  month = {Dec.},
  title = {Kara1k: a karaoke dataset for cover song identification and singing voice analysis},
  year = {2017},
  address={Taichung, Taiwan},
  pages = {1--8}
}

Aim of the paper

  • Propose a novel industrial musical database
  • Cover Song Identification task on the before-mentioned database
  • Singer's Gender Classification task on the before-mentioned database

Tree structure (Description of available files)

  • The folder src/ contains python files necessary to reproduce our algorithm
  • The folder data/ contains a file named filelist.csv that lists for each audio file:
    • the unique identifier
    • the artist name
    • the track name
    • the gender tag (female, male, females, males, mixed)
    • the language tag (en, fr, es, it, de, pt, nl)
    • a boolean indicating if features have been extracted for this audio file by:
      1. YAAFE
      2. Marsyas
      3. Essentia
      4. Vamp
      5. harmony-analyser
  • The folder features/ contains features extracted by
    • bextract from Marsyas with the following command: bextract -mfcc -zcrs -ctd -rlf -flx -ws 1024 -as 898 -sv -fe.

As concerns features extracted by YAAFE, Essentia, Vamp and harmony-analyser they cannot be stored on this github repository because of their inherent size and so are available upon request for direct download. The command used for extracting features with:

  • YAAFE: yaafe -r 22050 -f "mfcc: MFCC blockSize=2048 stepSize=1024" --resample -b output_dir_features input_filename
  • Essentia: essentia-extractors-v2.1_beta2/streaming_extractor_music input_filename output_filename
  • Vamp extracted via harmony-analyser using JNI wrapper:
    • java -jar ha-script.jar -a nnls-chroma:nnls-chroma -s .wav -t 0.07
    • java -jar ha-script.jar -a nnls-chroma:chordino-tones -s .wav -t 0.07
    • java -jar ha-script.jar -a nnls-chroma:chordino-labels -s .wav -t 0.07
    • java -jar ha-script.jar -a qm-vamp-plugins:qm-keydetector -s _wav -t 0.07
  • harmony-analyser with the following commands (note that Vamp plugin analysis was first performed to extract low-level features):
    • java -jar ha-script.jar -a chord_analyser:chord_complexity_distance -s .wav -t 0.07
    • java -jar ha-script.jar -a chroma_analyser:complexity_difference -s .wav -t 0.07
    • java -jar ha-script.jar -a chord_analyser:average_chord_complexity_distance -s .wav -t 0.07
    • java -jar ha-script.jar -a chord_analyser:tps_distance -s .wav -t 0.07
    • java -jar ha-script.jar -a filters:chord_vectors -s .wav -t 0.07
    • java -jar ha-script.jar -a filters:key_vectors -s .wav -t 0.07