数据科学的笔记以及资料搜集,目前尚在更新,部分内容来源于github搜集。
0.math (数学基础)
1.python-basic (python基础)
2.numpy(numpy基础)
3.pandas(pandas基础)
4.scipy(scipy基础)
5.data-visualization(数据可视化基础,包含matplotlib和seaborn)
6.scikit-learn(scikit-learn基础)
7.machine-learning(机器学习基础)
8.deep-learning(深度学习基础)
9.feature-engineering(特征工程基础)
- 《统计学习方法》李航
- https://github.com/donnemartin/data-science-ipython-notebooks
- https://github.com/apachecn/feature-engineering-for-ml-zh
- https://github.com/datawhalechina/pumpkin-book
- https://github.com/Doraemonzzz/Learning-from-data
- https://github.com/wzyonggege/statistical-learning-method
- https://github.com/WenDesi/lihang_book_algorithm
- https://www.coursera.org/course/ml
- https://mooc.guokr.com/note/12/ 小小人_V
- 《python科学计算》
机器学习qq群:1003271085(我们有10个群,加过一个就不需要加了)
注意:github下载太慢的话,关注我的公众号:“机器学习初学者”,回复“学习路线”即可下载本仓库的镜像文件,整个仓库压缩成一个iso。
如果需要引用这个Repo:
格式: fengdu78, Data-Science-Notes, (2019), GitHub repository, https://github.com/fengdu78/Data-Science-Notes