-
Python 3 (Recommend to use Anaconda)
-
NVIDIA GPU + CUDA
-
Python packages:
cd AMDC pip install -r requirements.txt
-
Download training spectral images (Google Drive / Baidu Disk, code:
mst1
), training RGB images (Google Drive / Baidu Disk), validation spectral images (Google Drive / Baidu Disk), validation RGB images (Google Drive / Baidu Disk), and testing RGB images (Google Drive / Baidu Disk) from the competition website of NTIRE 2022 Spectral Reconstruction Challenge. -
Place the training spectral images and validation spectral images to
/AMDC/dataset/Train_Spec/
. -
Place the training RGB images and validation RGB images to
/AMDC/dataset/Train_RGB/
. -
Place the testing RGB images to
/AMDC/dataset/Test_RGB/
. -
Then this repo is collected as the following form:
|--AMDC |--ARAD_1K |--dataset |--Train_Spec |--ARAD_1K_0001.mat |--ARAD_1K_0002.mat : |--ARAD_1K_0950.mat |--Train_RGB |--ARAD_1K_0001.jpg |--ARAD_1K_0002.jpg : |--ARAD_1K_0950.jpg |--Valid_Spec |--ARAD_1K_0901.mat |--ARAD_1K_0902.mat : |--ARAD_1K_0950.mat |--Valid_RGB |--ARAD_1K_0901.jpg |--ARAD_1K_0902.jpg : |--ARAD_1K_0950.jpg |--Test_RGB |--ARAD_1K_0951.jpg |--ARAD_1K_0952.jpg : |--ARAD_1K_1000.jpg |--split_txt |--train_list.txt |--valid_list.txt |--mask.mat
cd /AMDC/ARAD_1K/train_code/
python train.py --method AMDC_3stg --batch_size 4 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python train.py --method AMDC_5stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python train.py --method AMDC_7stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python train.py --method AMDC_9stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
(1) Download the pretrained model zoo from (will coming soon).
(2) Run the following command to test the model on the testing RGB images.
cd /AMDC/ARAD_1K/test_code/
python test.py --method AMDC_3stg --batch_size 4 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python test.py --method AMDC_5stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python test.py --method AMDC_7stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python test.py --method AMDC_9stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
-
The repo is collected as the following form:
|--AMDC |--simulation |--datasets |--cave_1024_28 |--scene1.mat |--scene2.mat : |--scene205.mat |--cave_1024_28_RGB |--scene1.mat |--scene2.mat : |--scene205.mat |--cave_512_28 |--scene1.mat |--scene2.mat : |--scene30.mat |--cave_512_28_RGB |--scene1.mat |--scene2.mat : |--scene30.mat |--TSA_simu_data |--Truth |--scene01.mat |--scene02.mat : |--scene10.mat |--Truth_RGB |--scene01.mat |--scene02.mat : |--scene10.mat |--mask.mat
1)Download cave_1024_28 (One Drive), CAVE_512_28 (Baidu Disk, code: ixoe
| One Drive), KAIST_CVPR2021 (Baidu Disk, code: 5mmn
| One Drive), TSA_simu_data (One Drive), TSA_real_data (One Drive), and then put them into the corresponding folders of datasets/
and recollect them as the following form:
2) Download cave_1024_28_RGB,Truth_RGB (Baidu Disk, code: y183
))
##2.Prepare Pretrained ckpt:
Download pretrained (will comming soon) .
cd /AMDC/simulation/train_code/
python train.py --method AMDC_3stg --batch_size 4 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python train.py --method AMDC_5stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python train.py --method AMDC_7stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python train.py --method AMDC_9stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
cd /AMDC/simulation/test_code/
python test.py --method AMDC_3stg --batch_size 4 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python test.py --method AMDC_5stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python test.py --method AMDC_7stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0
python test.py --method AMDC_9stg --batch_size 2 --outf ./exp/AMDC_3stg/ --data_root ../dataset/ --gpu_id 0