Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
xianshang33 committed Apr 12, 2024
1 parent 32d5918 commit 040642a
Show file tree
Hide file tree
Showing 12 changed files with 608 additions and 396 deletions.
438 changes: 224 additions & 214 deletions README.md

Large diffs are not rendered by default.

370 changes: 188 additions & 182 deletions README_en.md

Large diffs are not rendered by default.

19 changes: 19 additions & 0 deletions summary/2023-11/2311.07811.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
#### 背景
- **背景**
文章提出了关于大型语言模型(LLMs)在语法一致性方面的推理和泛化能力的研究。指出LLMs在处理句法结构任务时可能不总是可靠的,特别是在判断句子之间的逻辑关系时。这个发现对于理解LLMs如何学习和处理语言的深层结构有重要意义。

- **已有的工作**
论文指出,现有的研究通常关注大型语言模型(LLMs)生成任务的质量和风格,而不太涉及模型在语法结构理解方面的表现。此外,现有研究尚未深入探讨LLMs在执行语法变换任务时的泛化能力,例如判断不同语法结构的句子是否在逻辑上相等或包含。

#### 核心贡献
- **提出了一个研究LLMs在理解句法结构方面能力的方法**
- **挑战1:评价LLMs在语法变换任务中的泛化能力**
论文针对评价这一能力的挑战提出了一个评估方法。提出了一系列判断任务,要求模型评估语法转换后句子的正确性,例如时态再次正确化。这些任务旨在探究模型理解语句结构以及容错能力。论文采用了不同的提示格式和预训练数据类型来测试这些任务,并提供了详尽的分析。
- **挑战2:探索不同模型和训练数据对表现的影响**
文章进一步探讨了不同的模型架构和预训练策略(包括代码训练的模型)如何影响LLMs处理句法结构任务的能力。结果显示,某些模式在任务中表现得更好,但这种表现可能依赖于特定的启发式规则,而不是对句法结构的真正理解。

#### 实现与部署
论文的实验结果显示,通过考虑语句中的语法成分(如主语、动词及其关联性),一些大型语言模型在执行特定的语法任务时可以达到较高的推理准确性和可信度。然而,模型在处理“非推理”的句子时的准确性则有很大的差异,表明大型语言模型在采用链式思考(Chain-of-Thought)提示时,更容易依赖于语法启发式规则。论文强调,尽管某些模型通过特殊规则来近似语法推理,在非典型或反直觉的例子中准确性会明显降低。

#### 总结
本论文揭示了大型语言模型在理解和泛化句法结构时可能存在的局限性,这对于改进语言模型处理复杂语法任务的方式具有重要意义。
20 changes: 20 additions & 0 deletions summary/2024-04/2404.07498.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
#### 背景
- **背景**
论文介绍了序列显著性(Sequence Salience),这是一个用于交互式提示调试的视觉工具,使用输入显著性方法来改进针对大型语言模型(LLMs)复杂提示的调试。这种方法特别适合处理长文本,并通过可控的聚合,将标记级别的显著性提升到词、句子或段落级别,使得对长输入内容的显著性变得可行,并支持快速迭代,从而使实践者能够根据显著性结果进行精细修改提示。

- **已有的工作**
现有的工作主要是黑盒互动方式,也有一些引导开发者的提示工程工具,但它们通常依赖于外部启发式方法和设计模式进行指导。这些方法和工具并不支持对复杂提示操作的实时反馈和迭代改进。

#### 核心贡献
- **提出了一个序列显著性系统**
- **挑战1:交互式调试和快速迭代**
现有的输入显著性方法大多数不支持模型行为的因果预测,但仍然提供有用的启发式信息辅助实践者。序列显著性通过实时交互,允许实践者对输入进行修改并立即看到模型的响应,从而实现错误检测和快速提示修正。

- **挑战2:降低认知负荷并对齐开发者的思维模型**
序列显著性通过动态聚合方法将粒度从单个标记扩展到更粗的颗粒度,如单词、句子和段落,大大减少了实践者必须解释和采取行动的认知负荷。这对显著性提示进行了改进,使其更加符合开发者的思维模型。

#### 实现与部署
序列显著性作为基于浏览器的用户界面实现。用户可以通过数据点编辑器输入或编辑提示,或者使用数据表选择预加载的示例。然后用户选择要解释的序列,该序列可以是模型的响应或预定义的目标。显著性计算后将以热图的形式显示在文本上,更暗的高亮意味着这些标记对所选的预测目标更为重要。用户可以使用数据点编辑器根据观察编辑提示,运行模型并重新计算显著性,这样的迭代工作流可以迅速改善提示以达到期望的行为。

#### 总结
这篇论文提出了一个名为序列显著性(Sequence Salience)的系统,它扩展了现有的输入显著性(IS)方法,以支持复杂的LLM提示调试。该工具提供实时交互式调试,并降低了实践者的认知负荷,支持根据显著性结果快速迭代提示,与开发者的思维模型更加对齐。
20 changes: 20 additions & 0 deletions summary/2024-04/2404.07546.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
#### 背景
- **背景**
这篇文章探讨了大型语言模型(LLMs)通过上下文学习(ICL)如何在不更新数百万参数的情况下执行多种任务的能力。尽管如此,演示示例对提高最终任务性能的确切贡献并未在最近的分析研究中被充分探讨。

- **已有的工作**
已有工作试图揭示ICL特性背后的机制,比如模型通过ICL“回忆”预训练期间获取的潜在知识。但这些研究大多数关注演示示例中输入-标签映射的正确性,并未提供关于哪些特定因素导致性能提升的确定性答案。

#### 核心贡献
- **提出了一个解答ICL对性能贡献关键因素的方法**
- **挑战1:分解ICL的性能贡献**
作者首先识别出所有的响应(无ICL和有ICL的),并追踪所有实例的类别变化。然后提出将ICL带来的整体性能提升分解成三个贡献因素:标签空间、标签格式和辨别能力。通过对比无ICL和有ICL的输出,他们提出了评估这些贡献因素的方法。

- **挑战2:解析带来好的演示示例的检索机制**
研究发现,使用语义相似度高的示例对ICL性能有显著提升。因此,作者深入研究了检索机制如何帮助ICL,以及如何通过语义上有意义的句子嵌入和相似度检索来选择最佳的演示示例。

#### 实现与部署
这项研究使用了四种通用且指令调整后的LLMs,并在多个分类、序列标注和生成数据集上测量了三种贡献因素。研究结果表明,ICL在调整标签空间和格式方面的效用显著,但在提取具有丰富语义内容的判别知识方面的改进最小。此外,检索良好演示示例的分析强调了选择多样化和语义上相关演示示例对提升ICL性能的重要性。

#### 总结
本文研究了ICL在提升任务性能方面的生效机制,通过分解ICL的贡献因素,发现ICL通过精细调整标签空间和格式来显著提升性能,同时强调了选择合适演示示例的重要性。
20 changes: 20 additions & 0 deletions summary/2024-04/2404.07972.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
#### 背景
- **背景**
文章介绍了现有的基准测试存在的问题,即它们要么缺少交互环境,要么仅限于特定应用程序或领域的环境,无法反映真实世界计算机使用的多样性和复杂性,因此限制了任务的范围和代理的可扩展性。

- **已有的工作**
现有基准测试中的数据集通常提供示例而不是可执行环境,其非执行基评估假设每项任务只有一个解决方案,错误地对其他正确的解决方案进行惩罚。这些基准也错失了对重要交互性能的评估机会,导致无法全面评估代理完成多样化任务的能力。

#### 核心贡献
- **提出了一个名为OSWORLD的新型评估环境**
- **挑战1:有效评估**
OSWORLD是一个可执行和可控制的环境,包括针对多种真实操作系统(如Ubuntu,Windows,macOS)应用的任务初始化、基于执行的评估和互动代理学习。OSWORLD环境使用虚拟机技术,提供了一个安全的隔离环境,并预防代理对真实宿主机造成不可逆转的损害。此外,快照功能能够有效地重置虚拟环境。通过定制的评估脚本,OSWORLD对完成的任务进行可靠、可复制的评估。

- **挑战2:真实和开放的任务**
通过OSWORLD,研究者创建了一个涉及真实网络和桌面应用程序、操作系统文件I/O以及横跨多个应用程序的工作流程的基准测试,由369项计算机任务组成。这些任务示例源自现实世界的计算机使用案例,并包括详细的初始状态设置配置和自定义的执行基评估脚本。

#### 实现与部署
研究者进行了广泛的评估,揭露了现有先进的基于LLM/VLM的代理在OSWORLD上显著的不足。虽然人类可以完成超过72.36%的任务,但最好的模型仅成功完成了12.24%的任务,主要在GUI接地和操作知识方面遇到困难。OSWORLD的综合分析为开发多模型通用代理提供了以前的基准无法提供的宝贵洞察。

#### 总结
OSWORLD提供了一个新的评估环境,解决了现有基准测试的局限性,为开发能在真实计算机环境中完成开放式任务的多模态代理提供了基础。
19 changes: 19 additions & 0 deletions summary/2024-04/2404.07987.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
#### 背景
- **背景**
论文介绍了在文本到图像扩散模型中,尽管已经取得了一定进展,但现有方法仍然面临着显著挑战,尤其是在生成与图像条件控制一致的图像方面。为此,研究者们提出了ControlNet++,这是一种新方法,通过显式优化生成图像与条件控制之间的像素级循环一致性来改善可控生成。
- **已有的工作**
现有的方法通常涉及对扩散模型进行重训练,但这需要巨大的计算需求和大型公众数据集,后者比较稀缺。为改善可控性,有研究采用微调预训练的文本到图像模型或引入可训练的模块,如ControlNet。然而,即便如此,现有的方法仍然未能精确和细致地控制生成的图像,生成的图像显著偏离输入条件且缺乏明确的改进策略。

#### 核心贡献
- **提出了一个ControlNet++**
- **挑战1:精确可控性的缺失**
控制生成图像以使其与输入条件一致是一个显著的挑战。ControlNet++通过使用预训练的判别模型来提取生成图像的对应条件,然后优化输入条件控制和提取条件之间的一致性损失来解决这一挑战。该方法采用循环一致性的概念,通过在像素层面直接优化控制性来改进性能。

- **挑战2:计算效率与资源限制**
直接实现像素级损失可能导致效率问题,需要在多个采样时间步存储梯度,导致显著的时间和GPU内存消耗。为了避免这些代价,ControlNet++引入了一种有效的奖励策略,通过向输入图像添加噪声来故意扰乱一致性,然后使用单步去噪图像进行奖励微调来重建一致性,避免了由图像采样引起的时间和内存开销。

#### 实现与部署
ControlNet++通过多项实验评估,展示了在多种条件控制下显著提高了可控性。例如,与ControlNet相比,对于分割遮罩、线条艺术边缘和深度条件,ControlNet++分别在mIoU、SSIM和RMSE上取得了7.9%、13.4%和7.6%的改善。这表明ControlNet++在各种条件控制下都能产生更准确的可控生成图像,并为其他研究提供了一个统一和公开的可控性评估。

#### 总结
ControlNet++通过优化生成图像与条件控制之间的像素级一致性,并通过高效的奖励微调策略减少了与图像采样相关的时间和内存成本,显著改善了在多种条件控制下的可控性。
19 changes: 19 additions & 0 deletions summary_en/2023-11/2311.07811.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
#### Background
- **Background**
The paper addresses large language models' (LLMs) reasoning and generalization capabilities regarding syntactic consistency. It points out that LLMs may not always reliably handle tasks involving syntactic structures, especially when discerning logical relations between sentences, which is significant for understanding how LLMs learn and process the deep structure of language.

- **Existing Work**
The existing research often focuses on the quality and style of language generation tasks performed by LLMs without much consideration for the models' understanding of syntactic structures. Also, current studies have not delved deeply into the generalization capabilities of LLMs when performing syntactic transformation tasks, such as judging logical equivalence or containment between sentences with different syntactic structures.

#### Core Contributions
- **Introduced a method to assess LLMs' capabilities in understanding syntactic structures**
- **Challenge 1: Assessing LLMs' generalization in syntactic transformation tasks**
The paper proposes an assessment method to address this challenge. It introduces a series of judgment tasks that require models to evaluate the correctness of sentences after syntactic transformations, such as tense reinflection. These tasks are designed to probe models' understanding of sentence structures and their fault-tolerance. The paper uses different prompt formats and pre-training data types to test these tasks and provides thorough analysis.
- **Challenge 2: Exploring the impact of different models and training data on performance**
The paper further explores how different model architectures and pre-training strategies (including models pre-trained with code) affect LLMs' abilities to handle syntactic structure tasks. Results show that certain patterns perform better in tasks, but this performance may hinge on specific heuristic rules rather than a true understanding of syntactic structures.

#### Implementation and Deployment
The experimental results of the paper indicate that by considering syntactic components within a sentence (such as subjects, verbs, and their associations), some large language models achieve high reasoning accuracy and faithfulness scores in performing specific syntactic tasks. However, models show significant variance in accuracy when dealing with "non-entailment" sentences, suggesting a reliance on syntactic heuristics when using chain-of-thought prompts. The paper emphasizes that although some models approximate syntactic reasoning through specific rules, the accuracy significantly decreases in atypical or counterintuitive examples.

#### Summary
This paper unveils potential limitations of large language models in understanding and generalizing syntactic structures, which is crucial for improving the way language models handle complex syntactic tasks.
20 changes: 20 additions & 0 deletions summary_en/2024-04/2404.07498.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
#### Background
- **Background**
The paper discusses Sequence Salience, a visual tool for interactive prompt debugging using input salience methods, tailored for complex LLM prompts. It is especially well-suited for long texts by providing controllable aggregation from token-level salience to higher levels including word, sentence, or paragraph, facilitating tractability over long inputs.

- **Existing Work**
Existing work mainly involves black-box interaction, and although there are sophisticated prompt engineering tools to guide developers, they often rely on external heuristics and design patterns, lacking real-time feedback and iterative improvement on complex prompts.

#### Core Contributions
- **System: Sequence Salience**
- **Challenge 1: Interactive debugging and rapid iteration**
Existing input salience methods generally do not offer causal predictions of model behavior, but they provide useful heuristic information. Sequence Salience allows practitioners to interact in real-time, making changes to the input and immediately seeing the model's response, thus enabling error detection and prompt refinement.

- **Challenge 2: Lowering cognitive load and aligning with the developer's mental model**
Sequence Salience provides dynamic aggregation extending granularity from individual tokens to coarser levels such as words, sentences, and paragraphs, greatly reducing the cognitive load of practitioners and improving the alignment of salience prompts with the developer's mental model.

#### Implementation and Deployment
Sequence Salience is implemented as a browser-based user interface. Users can input or edit prompts through the Datapoint Editor, or select pre-loaded examples from a Data Table. They then choose a sequence to explain, either the model's response or a predefined target. Salience is computed and displayed over the text as a heatmap, with darker highlights indicating more importance to the chosen prediction target. Prompt Editing allows users to edit prompts based on their observations, run the model, and re-compute salience, using this iterative workflow to quickly improve prompts to achieve the desired behavior.

#### Summary
The paper presents a system called Sequence Salience, which extends existing input salience (IS) methods to support complex LLM prompt debugging. This tool offers real-time interactive debugging, lowers practitioner cognitive load, supports prompt iteration based on salience results, and aligns more closely with the developer's mental model.
20 changes: 20 additions & 0 deletions summary_en/2024-04/2404.07546.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
#### Background
- **Background**
The paper discusses the capability of Large Language Models (LLMs) to perform a wide range of tasks using In-context Learning (ICL) without updating millions of parameters. The precise contributions of demonstrations to improving the end-task performance have not been thoroughly investigated in recent analytical studies.

- **Existing Work**
Existing work attempts to unravel the mechanisms behind ICL characteristics, such as how models can "recall" latent knowledge acquired during pre-training through ICL. However, these studies mostly focus on the correctness of input-label mapping within the demonstrations and do not provide definitive answers about the specific factors that lead to performance improvements.

#### Core Contributions
- **Introduced a method to answer key factors contributing to ICL's performance:**
- **Challenge 1: Decomposing ICL's performance contribution**
The authors identify all responses (with and without ICL) and track the change in categories for all instances. They propose decomposing the overall performance enhancement facilitated by ICL into three contributing factors: label space, label format, and discrimination. By comparing the outputs with and without ICL, they propose methodologies to assess these contributing factors.

- **Challenge 2: Understanding the mechanism for retrieving good demonstrations**
The study finds that using semantically similar examples significantly enhances ICL performance. Hence, the authors dig deeper into how retrieval aids ICL and how to select the best demonstrations using semantically meaningful sentence embeddings and similarity retrieval.

#### Implementation and Deployment
The study utilized four general-purpose and instruction-tuned LLMs and measured the three contributing factors across multiple classification, sequence labeling, and generation datasets. The findings revealed that ICL is notably effective in regulating label space and format but yields the least improvement in eliciting discriminative knowledge within semantically-rich contexts. Furthermore, the analysis of retrieving good demonstrations underscores the importance of choosing diverse and semantically relevant demonstrations to boost ICL performance.

#### Summary
The paper investigates the mechanisms by which ICL improves task performance, identifying label space regulation and format refinement as significant contributors to performance enhancement while emphasizing the importance of selecting appropriate demonstrations.
Loading

0 comments on commit 040642a

Please sign in to comment.