Skip to content

Official Code Release for VetTag: improving automated veterinary diagnosis coding via large-scale language modeling

Notifications You must be signed in to change notification settings

wvandermerwe/VetTag

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

85 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VetTag

Introduction

This is the official cleaned repo we used to train, evaluate and interpret for VetTag paper.

Please feel free to contact [email protected] if you have any problem using these scripts.

Usage

Unsupervised Learning

Please create a json file in /path/to/hypes/ with the following format.

psvg.json
{
  "data_dir": "/path/to/data/psvg/",
  "encoder_path": "/path/to/data/encoder.json",
  "prefix": "psvg_oneline",
  "label_size": 0
}
  • data_dir and prefix: save data in /path/to/data/psvg/psvg_oneline_train.tsv, /path/to/data/psvg/psvg_oneline_valid.tsv and /path/to/data/psvg/psvg_oneline_test.tsv for training, validation and test. The file should only contain one line for the whole text.

  • encoder_path: save vocabulary in /path/to/data/encoder.json. It is a json file with format {'hello': 0, 'world': 1, ...}.

  • label_size: for unsupervised learning, label size should equal to 0.

Then use the following command to train and save the model in /path/to/exp/psvg/.

python trainer.py --outputdir /path/to/exp/psvg/ --train_emb --corpus psvg --hypes /path/to/hypes/psvg.json --batch_size 5 --bptt_size 600 --model_type transformer

Supervised Learning

Please create a json file in /path/to/hypes/ with the following format.

csu.json
{
  "data_dir": "/path/to/data/csu/",
  "encoder_path": "/path/to/data/encoder.json",
  "prefix": "csu",
  "label_size": 4577
}
  • data_dir and prefix: save data in /path/to/data/csu/csu_train.tsv, /path/to/data/csu/csu_valid.tsv and /path/to/data/csu/csu_test.tsv for training, validation and test. The file contains lines of annotated clinical notes with format text <tab> label_1 <space> label_2 <space> ... <space> label_k for each line.

  • encoder_path: save vocabulary in /path/to/data/encoder.json (the same file for unsupervised learning). It is a json file with format {'hello': 0, 'world': 1, ...}.

  • label_size: for supervised learning, we use 4577 finegrained SNOMED diagnosis codes.

Then use the following command to train and save the model in /path/to/exp/csu/.

python trainer.py --outputdir /path/to/exp/csu/ --corpus csu --hypes /path/to/hypes/csu.json --batch_size 5 --model_type transformer --cut_down_len 600 --train_emb --hierachical --inputdir /path/to/exp/psvg/pretrained_model.pickle

External Evaluation

Please create a json file in /path/to/hypes/ with the following format.

pp.json
{
  "data_dir": "/path/to/data/pp/",
  "encoder_path": "/path/to/data/encoder.json",
  "prefix": "pp",
  "label_size": 4577
}
  • data_dir and prefix: save data in /path/to/data/csu/pp_test.tsv for test. The file contains lines of annotated clinical notes with format text <tab> label_1 <space> label_2 <space> ... <space> label_k for each line.

  • encoder_path: save vocabulary in /path/to/data/encoder.json (the same file for unsupervised learning). It is a json file with format {'hello': 0, 'world': 1, ...}.

  • label_size: for supervised learning, we use 4577 finegrained SNOMED diagnosis codes (the same for supervised learning).

Then use the following command to evaluate the model.

python trainer.py --outputdir /path/to/exp/pp/ --corpus pp --hypes /path/to/hypes/pp.json --batch_size 5 --model_type transformer --cut_down_len 600 --hierachical --inputdir /path/to/exp/psvg/pretrained_model.pickle

Statistics and Analysis

Refer to jupyter/snomed_stat.ipynb, jupyter/species_stat.ipynb, jupyter/length_label_distribution.ipynb and jupyter/analysis.ipynb

Hierarchical Training

Two files are required: parents.json and labels.json (in data dir).

  • labels.json: the format is [SNOMED_ID_1, SNOMED_ID_2, …, SNOMED_ID_4577], which is all 4577 SNOMED labels we use.
  • parents.json: the format is {SNOMED_ID_i: parent_of_SNOMED_ID_i}, which is all SNOMED labels and their parents in the shortest path from the root node (introduced in the method section).

Interpretation

Refer to jupyter/interpret.ipynb and jupyter/salient_words.ipynb

About

Official Code Release for VetTag: improving automated veterinary diagnosis coding via large-scale language modeling

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 87.7%
  • Python 12.3%