PyTorch implementation following algorithms:
- Fast Gradient Sign Method (FGSM) [1]
- Basic Iterative Method (BIM) [2]
- DeepFool [3]
- Python 3.5.2
- PyTorch 0.4.0
- torchvision 0.2.1
- NumPy 1.14.3
$ python main.py
Label: 0 | Label: 1 | Label: 2 | Label: 3 | Label: 4 | Label: 5 | Label: 6 | Label: 7 | Label: 8 | Label: 9 |
Label: 2 | Label: 8 | Label: 1 | Label: 2 | Label: 9 | Label: 3 | Label: 5 | Label: 2 | Label: 1 | Label: 7 |
Label: 7 | Label: 8 | Label: 3 | Label: 2 | Label: 9 | Label: 3 | Label: 5 | Label: 2 | Label: 1 | Label: 7 |
Label: 9 | Label: 8 | Label: 3 | Label: 8 | Label: 9 | Label: 3 | Label: 5 | Label: 8 | Label: 3 | Label: 7 |
[1] Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy. Explaining and Harnessing Adversarial Examples. ICLR, 2015
[2] Alexey Kurakin, Ian J. Goodfellow, Samy Bengio. Adversarial Examples in the Physical World. arXiv, 2016
[3] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. CVPR, 2016
Kuan-Hao Huang / @ej0cl6