-
data preprocess
you can use the dataset int data/
or using utils/augmentation.py for data preprocess
-
train
generation model(launcher_of_clm.py)
1. pretain:
train_clm(data_path='data/Ds_9.csv', smi_idx=0, model_name='pt', epochs=30, fq_saving=5)
2. fine-tune:
train_clm(data_path='data/Dm.csv', smi_idx=0, model_name='tl', epochs=30, fq_saving=5)
predictive model(launcher_of_sm.py)
train_predictor('data/Dm.csv', pretrain_path, prop_idx=11, epochs=100, k=10, enum_smi=100, patience=3, fq_saving=5)
note: pretrain_path should be the path of model parameters saved in the training process of pretrained generation model
3 . generation
run the generate() or valid_generate() in launcher_of_clm.py
4.Score
run the score() in launcher_of_sm.py