Implementations of joint models for POS tagging and dependency parsing, as described in my papers:
- Dat Quoc Nguyen and Karin Verspoor. 2018. An improved neural network model for joint POS tagging and dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 81-91. [.bib] (jPTDP v2.0)
- Dat Quoc Nguyen, Mark Dras and Mark Johnson. 2017. A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 134-142. [.bib] (jPTDP v1.0)
This github project currently supports jPTDP v2.0, while v1.0 can be found in the release section. Please cite paper [1] when jPTDP is used to produce published results or incorporated into other software. I would highly appreciate to have your bug reports, comments and suggestions about jPTDP. As a free open-source implementation, jPTDP is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
jPTDP requires the following software packages:
-
Python 2.7
-
$ virtualenv -p python2.7 .DyNet $ source .DyNet/bin/activate $ pip install cython numpy $ pip install dynet==2.0.3
Once you installed the prerequisite packages above, you can clone or download (and then unzip) jPTDP. Next sections show instructions to train a new joint model for POS tagging and dependency parsing, and then to utilize a pre-trained model.
Suppose that SOURCE_DIR
is simply used to denote the source code directory. Similar to files train.conllu
and dev.conllu
in folder SOURCE_DIR/sample
or treebanks in the Universal Dependencies (UD) project, the training and development files are formatted following 10-column data format. For training, jPTDP will only use information from columns 1 (ID), 2 (FORM), 4 (Coarse-grained POS tags---UPOSTAG), 7 (HEAD) and 8 (DEPREL).
To train a joint model for POS tagging and dependency parsing, you perform:
SOURCE_DIR$ python jPTDP.py --dynet-seed 123456789 [--dynet-mem <int>] [--epochs <int>] [--lstmdims <int>] [--lstmlayers <int>] [--hidden <int>] [--wembedding <int>] [--cembedding <int>] [--pembedding <int>] [--prevectors <path-to-pre-trained-word-embedding-file>] [--model <String>] [--params <String>] --outdir <path-to-output-directory> --train <path-to-train-file> --dev <path-to-dev-file>
where hyper-parameters in [] are optional:
--dynet-mem
: Specify DyNet memory in MB.--epochs
: Specify number of training epochs. Default value is 30.--lstmdims
: Specify number of BiLSTM dimensions. Default value is 128.--lstmlayers
: Specify number of BiLSTM layers. Default value is 2.--hidden
: Specify size of MLP hidden layer. Default value is 100.--wembedding
: Specify size of word embeddings. Default value is 100.--cembedding
: Specify size of character embeddings. Default value is 50.--pembedding
: Specify size of POS tag embeddings. Default value is 100.--prevectors
: Specify path to the pre-trained word embedding file for initialization. Default value is "None" (i.e. word embeddings are randomly initialized).--model
: Specify a name for model parameters file. Default value is "model".--params
: Specify a name for model hyper-parameters file. Default value is "model.params".--outdir
: Specify path to directory where the trained model will be saved.--train
: Specify path to the training data file.--dev
: Specify path to the development data file.
For example:
SOURCE_DIR$ python jPTDP.py --dynet-seed 123456789 --dynet-mem 1000 --epochs 30 --lstmdims 128 --lstmlayers 2 --hidden 100 --wembedding 100 --cembedding 50 --pembedding 100 --model trialmodel --params trialmodel.params --outdir sample/ --train sample/train.conllu --dev sample/dev.conllu
will produce model files trialmodel
and trialmodel.params
in folder SOURCE_DIR/sample
.
If you would like to use the fine-grained language-specific POS tags in the 5th column instead of the coarse-grained POS tags in the 4th column, you should use swapper.py
in folder SOURCE_DIR/utils
to swap contents in the 4th and 5th columns:
SOURCE_DIR$ python utils/swapper.py <path-to-train-(and-dev)-file>
For example:
SOURCE_DIR$ python utils/swapper.py sample/train.conllu
SOURCE_DIR$ python utils/swapper.py sample/dev.conllu
will generate two new files for training: train.conllu.ux2xu
and dev.conllu.ux2xu
in folder SOURCE_DIR/sample
.
Assume that you are going to utilize a pre-trained model for annotating a corpus whose each line represents a tokenized/word-segmented sentence. You should use converter.py
in folder SOURCE_DIR/utils
to obtain a 10-column data format of this corpus:
SOURCE_DIR$ python utils/converter.py <file-path>
For example:
SOURCE_DIR$ python utils/converter.py sample/test
will generate in folder SOURCE_DIR/sample
a file named test.conllu
which can be used later as input to the pre-trained model.
To utilize a pre-trained model for POS tagging and dependency parsing, you perform:
SOURCE_DIR$ python jPTDP.py --predict --model <path-to-model-parameters-file> --params <path-to-model-hyper-parameters-file> --test <path-to-10-column-input-file> --outdir <path-to-output-directory> --output <String>
--model
: Specify path to model parameters file.--params
: Specify path to model hyper-parameters file.--test
: Specify path to 10-column input file.--outdir
: Specify path to directory where output file will be saved.--output
: Specify name of the output file.
For example:
SOURCE_DIR$ python jPTDP.py --predict --model sample/trialmodel --params sample/trialmodel.params --test sample/test.conllu --outdir sample/ --output test.conllu.pred
SOURCE_DIR$ python jPTDP.py --predict --model sample/trialmodel --params sample/trialmodel.params --test sample/dev.conllu --outdir sample/ --output dev.conllu.pred
will produce output files test.conllu.pred
and dev.conllu.pred
in folder SOURCE_DIR/sample
.
Pre-trained jPTDP v2.0 models, which were trained on English WSJ Penn treebank, GENIA and UD v2.2 treebanks, can be found at HERE. Results on test sets (as detailed in paper [1]) are as follows:
Treebank | Model name | POS | UAS | LAS |
---|---|---|---|---|
English WSJ Penn treebank | model256 | 97.97 | 94.51 | 92.87 |
English WSJ Penn treebank | model | 97.88 | 94.25 | 92.58 |
model256
and model
denote the pre-trained models which use 256- and 128-dimensional LSTM hidden states, respectively, i.e. model256
is more accurate but slower.
Treebank | Code | UPOS | UAS | LAS |
---|---|---|---|---|
UD_Afrikaans-AfriBooms | af_afribooms | 95.73 | 82.57 | 78.89 |
UD_Ancient_Greek-PROIEL | grc_proiel | 96.05 | 77.57 | 72.84 |
UD_Ancient_Greek-Perseus | grc_perseus | 88.95 | 65.09 | 58.35 |
UD_Arabic-PADT | ar_padt | 96.33 | 86.08 | 80.97 |
UD_Basque-BDT | eu_bdt | 93.62 | 79.86 | 75.07 |
UD_Bulgarian-BTB | bg_btb | 98.07 | 91.47 | 87.69 |
UD_Catalan-AnCora | ca_ancora | 98.46 | 90.78 | 88.40 |
UD_Chinese-GSD | zh_gsd | 93.26 | 82.50 | 77.51 |
UD_Croatian-SET | hr_set | 97.42 | 88.74 | 83.62 |
UD_Czech-CAC | cs_cac | 98.87 | 89.85 | 87.13 |
UD_Czech-FicTree | cs_fictree | 97.98 | 88.94 | 85.64 |
UD_Czech-PDT | cs_pdt | 98.74 | 89.64 | 87.04 |
UD_Czech-PUD | cs_pud | 96.71 | 87.62 | 82.28 |
UD_Danish-DDT | da_ddt | 96.18 | 82.17 | 78.88 |
UD_Dutch-Alpino | nl_alpino | 95.62 | 86.34 | 82.37 |
UD_Dutch-LassySmall | nl_lassysmall | 95.21 | 86.46 | 82.14 |
UD_English-EWT | en_ewt | 95.48 | 87.55 | 84.71 |
UD_English-GUM | en_gum | 94.10 | 84.88 | 80.45 |
UD_English-LinES | en_lines | 95.55 | 80.34 | 75.40 |
UD_English-PUD | en_pud | 95.25 | 87.49 | 84.25 |
UD_Estonian-EDT | et_edt | 96.87 | 85.45 | 82.13 |
UD_Finnish-FTB | fi_ftb | 94.53 | 86.10 | 82.45 |
UD_Finnish-PUD | fi_pud | 96.44 | 87.54 | 84.60 |
UD_Finnish-TDT | fi_tdt | 96.12 | 86.07 | 82.92 |
UD_French-GSD | fr_gsd | 97.11 | 89.45 | 86.43 |
UD_French-Sequoia | fr_sequoia | 97.92 | 89.71 | 87.43 |
UD_French-Spoken | fr_spoken | 94.25 | 79.80 | 73.45 |
UD_Galician-CTG | gl_ctg | 97.12 | 85.09 | 81.93 |
UD_Galician-TreeGal | gl_treegal | 93.66 | 77.71 | 71.63 |
UD_German-GSD | de_gsd | 94.07 | 81.45 | 76.68 |
UD_Gothic-PROIEL | got_proiel | 93.45 | 79.80 | 71.85 |
UD_Greek-GDT | el_gdt | 96.59 | 87.52 | 84.64 |
UD_Hebrew-HTB | he_htb | 96.24 | 87.65 | 82.64 |
UD_Hindi-HDTB | hi_hdtb | 96.94 | 93.25 | 89.83 |
UD_Hungarian-Szeged | hu_szeged | 92.07 | 76.18 | 69.75 |
UD_Indonesian-GSD | id_gsd | 93.29 | 84.64 | 77.71 |
UD_Irish-IDT | ga_idt | 89.74 | 75.72 | 65.78 |
UD_Italian-ISDT | it_isdt | 98.01 | 92.33 | 90.20 |
UD_Italian-PoSTWITA | it_postwita | 95.41 | 84.20 | 79.11 |
UD_Japanese-GSD | ja_gsd | 97.27 | 94.21 | 92.02 |
UD_Japanese-Modern | ja_modern | 70.53 | 66.88 | 49.51 |
UD_Korean-GSD | ko_gsd | 93.35 | 81.32 | 76.58 |
UD_Korean-Kaist | ko_kaist | 93.53 | 83.59 | 80.74 |
UD_Latin-ITTB | la_ittb | 98.12 | 82.99 | 79.96 |
UD_Latin-PROIEL | la_proiel | 95.54 | 74.95 | 69.76 |
UD_Latin-Perseus | la_perseus | 82.36 | 57.21 | 46.28 |
UD_Latvian-LVTB | lv_lvtb | 93.53 | 81.06 | 76.13 |
UD_North_Sami-Giella | sme_giella | 87.48 | 65.79 | 58.09 |
UD_Norwegian-Bokmaal | no_bokmaal | 97.73 | 89.83 | 87.57 |
UD_Norwegian-Nynorsk | no_nynorsk | 97.33 | 89.73 | 87.29 |
UD_Norwegian-NynorskLIA | no_nynorsklia | 85.22 | 64.14 | 54.31 |
UD_Old_Church_Slavonic-PROIEL | cu_proiel | 93.69 | 80.59 | 73.93 |
UD_Old_French-SRCMF | fro_srcmf | 95.12 | 86.65 | 81.15 |
UD_Persian-Seraji | fa_seraji | 96.66 | 88.07 | 84.07 |
UD_Polish-LFG | pl_lfg | 98.22 | 95.29 | 93.10 |
UD_Polish-SZ | pl_sz | 97.05 | 90.98 | 87.66 |
UD_Portuguese-Bosque | pt_bosque | 96.76 | 88.67 | 85.71 |
UD_Romanian-RRT | ro_rrt | 97.43 | 88.74 | 83.54 |
UD_Russian-SynTagRus | ru_syntagrus | 98.51 | 91.00 | 88.91 |
UD_Russian-Taiga | ru_taiga | 85.49 | 65.52 | 56.33 |
UD_Serbian-SET | sr_set | 97.40 | 89.32 | 85.03 |
UD_Slovak-SNK | sk_snk | 95.18 | 85.88 | 81.89 |
UD_Slovenian-SSJ | sl_ssj | 97.79 | 88.26 | 86.10 |
UD_Slovenian-SST | sl_sst | 89.50 | 66.14 | 58.13 |
UD_Spanish-AnCora | es_ancora | 98.57 | 90.30 | 87.98 |
UD_Swedish-LinES | sv_lines | 95.51 | 83.60 | 78.97 |
UD_Swedish-PUD | sv_pud | 92.10 | 79.53 | 74.53 |
UD_Swedish-Talbanken | sv_talbanken | 96.55 | 86.53 | 83.01 |
UD_Turkish-IMST | tr_imst | 92.93 | 70.53 | 62.55 |
UD_Ukrainian-IU | uk_iu | 95.24 | 83.47 | 79.38 |
UD_Urdu-UDTB | ur_udtb | 93.35 | 86.74 | 80.44 |
UD_Uyghur-UDT | ug_udt | 87.63 | 76.14 | 63.37 |
UD_Vietnamese-VTB | vi_vtb | 87.63 | 67.72 | 58.27 |