Skip to content
/ DLUP Public
forked from peng113028/DLUP

a deep learning method for Plasma Proteome identification and quantification

Notifications You must be signed in to change notification settings

ustc-ei/DLUP

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DLUP

A deep learning method for Human Plasma Proteome identification and quantification.

Installation

1. Install Python (Anaconda)

Download and install Anaconda.

Create a new environment with Python 3.9+:

conda create --name yourEnv python=3.9

Activate the environment:

conda activate yourEnv

2. Install CUDA (optional)

If you have a GPU, you can install CUDA. If not, skip this step.

Visit the CUDA Toolkit Archive.

Select your computer's architecture.

Choose CUDA 11.7.0 and download the toolkit.

3. Install Required Packages

Install the necessary packages from the requirements.txt file:

conda install --yes --file requirements.txt

Getting Started

1. Prepare Your Raw Data

Create a folder to store your raw data. Here is an example of how your folder structure should look:

ttp_20230702_CCS
├── ttp_20230702_CCS_Plasma_trypsin_Mix1_20min_system-test-1_Slot1-10_1_12901.d
├── ttp_20230702_CCS_Plasma_trypsin_Mix1_20min_system-test-2_Slot1-10_1_12902.d
├── ttp_20230702_CCS_Plasma_trypsin_Mix1_20min_system-test-3_Slot1-10_1_12903.d
├── ttp_20230702_CCS_Plasma_trypsin_Mix1_20min_system-test-4_Slot1-10_1_12904.d
└── ttp_20230702_CCS_Plasma_trypsin_Mix1_20min_system-test-5_Slot1-10_1_12905.d

2. Generate the Library

Create a folder to store the raw library files with the .tsv suffix.

Run library_generation.py to generate the target and decoy libraries with the .npy suffix.

3. Create the Config Files

In the configs folder, you will find two JSON files:

  • preprocess_configs.json
  • model_configs.json

preprocess_configs.json

You can modify the following fields:

  • library: Replace target_path and decoy_path with your library paths.
  • save_root_path: Set the path to save the preprocessed data.
  • mobilityDistanceThreshold: Set to 0.05 or 0.1 to filter MS2 data.

model_configs.json

You can modify the batch_size field.

4. Identification and Quantification

Run the main.py script:

python main.py --data_path='raw_data_path' --num_process=5

The results, including the peptide and protein group quantification in TSV format, will be saved in the save_root_path folder.

About

a deep learning method for Plasma Proteome identification and quantification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 85.8%
  • Python 14.2%