- Personal study project for getting used to java spring
- Stock price prediction web site
- LSTM model trained for predict next day KOSPI close price
- Check site from website
-
data
- KOSPI close price prediction for next day
- trained data KOSPI between '2014-01-01' to '2022-01-01'
- test data KOSPI between '2022-01-01' to '2022-07-01'
-
regression LSTM
- model structure (LSTM, {'n_layers':1, 'bidirectional': True,"rnn_dropout":0.3,"fc_dropout":0.9})
- mse loss 0.000741
- When use it as category classification, up down over 0.2% increase than prev close price
- expected earning when only buy true predicted : 0.15% per day (without transaction fee(tax))
- expected earning when all buy : -0.10% per day (without transaction fee(tax))
precision recall f1-score support False 0.59 0.88 0.71 50376 True 0.46 0.14 0.21 35269 accuracy 0.58 85645 macro avg 0.52 0.51 0.46 85645 weighted avg 0.54 0.58 0.51 85645
- Spring
- Java 11
- Spring boot 2.6.6
- JPA, hibernate
- Spring security
- mockito
- flyway
- lombok
- h2
- mariadb
- redis
- Nuxt
- pinia
- billboard.js
- vue-sweetalert2
- fastai
- tsai
- 스프링부트로 웹 서비스 출시하기
- spring boot
- java
- Spring Security를 이용한 회원가입/로그인/로그아웃🐵
- Spring Exception Handling
- Spring Guide - Exception 전략
- nuxtjs
- pinia
- Vuetify login
- canva
- termly, Privacy Policy Generator
- tsai
- fastai
- Key takeaways from Kaggle’s most recent time series competition
- Deep Learning With Weighted Cross Entropy Loss On Imbalanced Tabular Data Using FastAI
- How to Deal With Imbalanced Classification and Regression Data
- Delving into Deep Imbalanced Regression
- 불균형 데이터 해결하기, 주가 예측 프로젝트
- Stanford researchers have developed an AI model, StockBot