Skip to content
forked from pnnx/pnnx

PyTorch Neural Network eXchange

Notifications You must be signed in to change notification settings

tamnguyenvan/pnnx

 
 

Repository files navigation

pnnx

download

PyTorch Neural Network eXchange

Note: The current implementation is in https://github.com/Tencent/ncnn/tree/master/tools/pnnx

Download PNNX Windows/Linux/MacOS Executable

https://github.com/pnnx/pnnx/releases

This package includes all the binaries required. It is portable, so no CUDA or PyTorch runtime environment is needed :)

Usages

  1. Export your model to TorchScript
import torch
import torchvision.models as models

net = models.resnet18(pretrained=True)
net = net.eval()

x = torch.rand(1, 3, 224, 224)

# You could try disabling checking when tracing raises error
# mod = torch.jit.trace(net, x, check_trace=False)
mod = torch.jit.trace(net, x)

mod.save("resnet18.pt")
  1. Convert TorchScript to PNNX
pnnx resnet18.pt inputshape=[1,3,224,224]

Normally, you will get seven files

resnet18.pnnx.param PNNX graph definition

resnet18.pnnx.bin PNNX model weight

resnet18_pnnx.py PyTorch script for inference, the python code for model construction and weight initialization

resnet18.pnnx.onnx PNNX model in onnx format

resnet18.ncnn.param ncnn graph definition

resnet18.ncnn.bin ncnn model weight

resnet18_ncnn.py pyncnn script for inference

  1. Visualize PNNX with Netron

Open https://netron.app/ in browser, and drag resnet18.pnnx.param or resnet18.pnnx.onnx into it.

  1. PNNX command line options
Usage: pnnx [model.pt] [(key=value)...]
  pnnxparam=model.pnnx.param
  pnnxbin=model.pnnx.bin
  pnnxpy=model_pnnx.py
  pnnxonnx=model.pnnx.onnx
  ncnnparam=model.ncnn.param
  ncnnbin=model.ncnn.bin
  ncnnpy=model_ncnn.py
  fp16=1
  optlevel=2
  device=cpu/gpu
  inputshape=[1,3,224,224],...
  inputshape2=[1,3,320,320],...
  customop=/home/nihui/.cache/torch_extensions/fused/fused.so,...
  moduleop=models.common.Focus,models.yolo.Detect,...
Sample usage: pnnx mobilenet_v2.pt inputshape=[1,3,224,224]
              pnnx yolov5s.pt inputshape=[1,3,640,640] inputshape2=[1,3,320,320] device=gpu moduleop=models.common.Focus,models.yolo.Detect

Parameters:

pnnxparam (default="*.pnnx.param", * is the model name): PNNX graph definition file

pnnxbin (default="*.pnnx.bin"): PNNX model weight

pnnxpy (default="*_pnnx.py"): PyTorch script for inference, including model construction and weight initialization code

pnnxonnx (default="*.pnnx.onnx"): PNNX model in onnx format

ncnnparam (default="*.ncnn.param"): ncnn graph definition

ncnnbin (default="*.ncnn.bin"): ncnn model weight

ncnnpy (default="*_ncnn.py"): pyncnn script for inference

fp16 (default=1): save ncnn weight and onnx in fp16 data type

optlevel (default=2): graph optimization level

Option Optimization level
0 do not apply optimization
1 optimization for inference
2 optimization more for inference

device (default="cpu"): device type for the input in TorchScript model, cpu or gpu

inputshape (Optional): shapes of model inputs. It is used to resolve tensor shapes in model graph. for example, [1,3,224,224] for the model with only 1 input, [1,3,224,224],[1,3,224,224] for the model that have 2 inputs.

inputshape2 (Optional): shapes of alternative model inputs, the format is identical to inputshape. Usually, it is used with inputshape to resolve dynamic shape (-1) in model graph.

customop (Optional): list of Torch extensions (dynamic library) for custom operators, separated by ",". For example, /home/nihui/.cache/torch_extensions/fused/fused.so,...

moduleop (Optional): list of modules to keep as one big operator, separated by ",". for example, models.common.Focus,models.yolo.Detect

Build from Source

  1. Download and setup the libtorch from https://pytorch.org/

  2. Clone pnnx (inside Tencent/ncnn tools/pnnx folder)

git clone https://github.com/Tencent/ncnn.git
  1. Build with CMake
mkdir ncnn/tools/pnnx/build
cd ncnn/tools/pnnx/build
cmake -DCMAKE_INSTALL_PREFIX=install -DTorch_INSTALL_DIR=<your libtorch dir> ..
cmake --build . --config Release -j 2
cmake --build . --config Release --target install

About

PyTorch Neural Network eXchange

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published