Skip to content

stoneMo/MGN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-modal Grouping Network for Weakly-Supervised Audio-Visual Video Parsing

Official implementation for MGN.

MGN is a novel and lightweight baseline with explicitly semantic-aware grouping for weakly-supervised audio-visual video parsing.

Multi-modal Grouping Network for Weakly-Supervised Audio-Visual Video Parsing
Shentong Mo, Yapeng Tian
NeurIPS 2022.

MGN Illustration

Environment

To setup the environment, please simply run

pip install -r requirements.txt

Datasets

Data can be downloaded from Unified Multisensory Perception: Weakly-Supervised Audio-Visual Video Parsing, ECCV 2020

Model

A trained model MGN_Net.pt is provided for inference in models dir.

Train & Test

For training an MGN model, please run

python main.py --mode train \
    --audio_dir path/to/vggish/feats/ \
    --video_dir path/to/res152/feats/ \
    --st_dir path/to/r2plus1d_18/feats/ \
    --model_save_dir models/ \
    --unimodal_assign soft --crossmodal_assign soft \
    --epochs 40 \
    --depth_aud 3 --depth_vis 3 --depth_av 6

For testing, simply run

python main.py --mode test \
    --audio_dir path/to/vggish/feats/ \
    --video_dir path/to/res152/feats/ \
    --st_dir path/to/r2plus1d_18/feats/ \
    --model_save_dir models/ \
    --unimodal_assign soft --crossmodal_assign soft

Citation

If you find this repository useful, please cite our paper:

@inproceedings{mo2022multimodal,
  title={Multi-modal Grouping Network for Weakly-Supervised Audio-Visual Video Parsing},
  author={Mo, Shentong and Tian, Yapeng},
  booktitle={Advances in Neural Information Processing Systems},
  year={2022}
}