Skip to content

Apply a ternary callback to strided input array elements and assign results to elements in a strided output array.

License

Notifications You must be signed in to change notification settings

stdlib-js/strided-base-ternary

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Ternary

NPM version Build Status Coverage Status

Apply a ternary callback to strided input array elements and assign results to elements in a strided output array.

Installation

npm install @stdlib/strided-base-ternary

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var ternary = require( '@stdlib/strided-base-ternary' );

ternary( arrays, shape, strides, fcn )

Applies a ternary callback to strided input array elements and assigns results to elements in a strided output array.

var add = require( '@stdlib/math-base-ops-add3' );
var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var z = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var w = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );

ternary( [ x, y, z, w ], [ x.length ], [ 1, 1, 1, 1 ], add );
// w => <Float64Array>[ 3.0, 6.0, 9.0, 12.0, 15.0 ]

The function accepts the following arguments:

  • arrays: array-like object containing three strided input arrays and one strided output array.
  • shape: array-like object containing a single element, the number of indexed elements.
  • strides: array-like object containing the stride lengths for the strided input and output arrays.
  • fcn: ternary function to apply.

The shape and strides parameters determine which elements in the strided input and output arrays are accessed at runtime. For example, to index every other value in the strided input arrays and to index the first N elements of the strided output array in reverse order,

var add = require( '@stdlib/math-base-ops-add3' );
var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var z = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var w = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );

ternary( [ x, y, z, w ], [ 3 ], [ 2, 2, 2, -1 ], add );
// w => <Float64Array>[ 15.0, 9.0, 3.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var add = require( '@stdlib/math-base-ops-add3' );
var Float64Array = require( '@stdlib/array-float64' );

// Initial arrays...
var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var z0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var w0 = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var z1 = new Float64Array( z0.buffer, z0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var w1 = new Float64Array( w0.buffer, w0.BYTES_PER_ELEMENT*3 ); // start at 4th element

ternary( [ x1, y1, z1, w1 ], [ 3 ], [ -2, -2, -2, 1 ], add );
// w0 => <Float64Array>[ 0.0, 0.0, 0.0, 18.0, 12.0, 6.0 ]

ternary.ndarray( arrays, shape, strides, offsets, fcn )

Applies a ternary callback to strided input array elements and assigns results to elements in a strided output array using alternative indexing semantics.

var add = require( '@stdlib/math-base-ops-add3' );
var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var z = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var w = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );

ternary.ndarray( [ x, y, z, w ], [ x.length ], [ 1, 1, 1, 1 ], [ 0, 0, 0, 0 ], add );
// w => <Float64Array>[ 3.0, 6.0, 9.0, 12.0, 15.0 ]

The function accepts the following additional arguments:

  • offsets: array-like object containing the starting indices (i.e., index offsets) for the strided input and output arrays.

While typed array views mandate a view offset based on the underlying buffer, the offsets parameter supports indexing semantics based on starting indices. For example, to index every other value in the strided input arrays starting from the second value and to index the last N elements in the strided output array,

var add = require( '@stdlib/math-base-ops-add3' );
var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var z = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var w = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

ternary.ndarray( [ x, y, z, w ], [ 3 ], [ 2, 2, 2, -1 ], [ 1, 1, 1, w.length-1 ], add );
// w => <Float64Array>[ 0.0, 0.0, 0.0, 18.0, 12.0, 6.0 ]

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var filledarray = require( '@stdlib/array-filled' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var add = require( '@stdlib/math-base-ops-add3' );
var ternary = require( '@stdlib/strided-base-ternary' );

var N = 10;

var x = filledarrayBy( N, 'generic', discreteUniform( -100, 100 ) );
console.log( x );

var y = filledarrayBy( N, 'generic', discreteUniform( -100, 100 ) );
console.log( y );

var z = filledarrayBy( N, 'generic', discreteUniform( -100, 100 ) );
console.log( z );

var w = filledarray( 0.0, N, 'generic' );
console.log( w );

var shape = [ N ];
var strides = [ 1, 1, 1, -1 ];
var offsets = [ 0, 0, 0, N-1 ];

ternary.ndarray( [ x, y, z, w ], shape, strides, offsets, add );
console.log( w );

See Also

  • @stdlib/strided-base/binary: apply a binary callback to elements in strided input arrays and assign results to elements in a strided output array.
  • @stdlib/strided-base/nullary: apply a nullary callback and assign results to elements in a strided output array.
  • @stdlib/strided-base/quaternary: apply a quaternary callback to strided input array elements and assign results to elements in a strided output array.
  • @stdlib/strided-base/quinary: apply a quinary callback to strided input array elements and assign results to elements in a strided output array.
  • @stdlib/strided-base/unary: apply a unary callback to elements in a strided input array and assign results to elements in a strided output array.

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.