Welcome to Bottlerocket!
Bottlerocket is a free and open-source Linux-based operating system meant for hosting containers.
To learn more about Bottlerocket, visit the official Bottlerocket website and documentation. Otherwise, if you’re ready to jump right in, read one of our setup guides for running Bottlerocket in Amazon EKS, Amazon ECS, or VMware. If you're interested in running Bottlerocket on bare metal servers, please refer to the provisioning guide to get started.
Bottlerocket focuses on security and maintainability, providing a reliable, consistent, and safe platform for container-based workloads. This is a reflection of what we've learned building operating systems and services at Amazon. You can read more about what drives us in our charter.
The base operating system has just what you need to run containers reliably, and is built with standard open-source components. Bottlerocket-specific additions focus on reliable updates and on the API. Instead of making configuration changes manually, you can change settings with an API call, and these changes are automatically migrated through updates.
Some notable features include:
- API access for configuring your system, with secure out-of-band access methods when you need them.
- Updates based on partition flips, for fast and reliable system updates.
- Modeled configuration that's automatically migrated through updates.
- Security as a top priority.
There are many ways to take part in the Bottlerocket community:
-
Join us on Meetup to hear about the latest Bottlerocket (virtual/in-person) events and community meetings. Community meetings are typically every other week.
Details can be found under the Events section on Meetup, and you will receive email notifications if you become a member of the Meetup group. (It's free to join!)
-
Start or join a discussion if you have questions about Bottlerocket.
-
If you're interested in contributing, thank you! Please see our contributor's guide.
If you find a security issue, please contact our security team rather than opening an issue.
We use GitHub issues to track other bug reports and feature requests. You can look at existing issues to see whether your concern is already known.
If not, you can select from a few templates and get some guidance on the type of information that would be most helpful. Contact us with a new issue here.
We don't have other communication channels set up quite yet, but don't worry about making an issue or a discussion thread! You can let us know about things that seem difficult, or even ways you might like to help.
To start, we're focusing on the use of Bottlerocket as a host OS in AWS EKS Kubernetes clusters and Amazon ECS clusters. We’re excited to get early feedback and to continue working on more use cases!
Bottlerocket is architected such that different cloud environments and container orchestrators can be supported in the future.
A build of Bottlerocket that supports different features or integration characteristics is known as a 'variant'.
The artifacts of a build will include the architecture and variant name.
For example, an x86_64
build of the aws-k8s-1.24
variant will produce an image named bottlerocket-aws-k8s-1.24-x86_64-<version>-<commit>.img
.
The following variants support EKS, as described above:
aws-k8s-1.23
aws-k8s-1.24
aws-k8s-1.25
aws-k8s-1.26
aws-k8s-1.27
aws-k8s-1.28
aws-k8s-1.23-nvidia
aws-k8s-1.24-nvidia
aws-k8s-1.25-nvidia
aws-k8s-1.26-nvidia
aws-k8s-1.27-nvidia
aws-k8s-1.28-nvidia
The following variants support ECS:
aws-ecs-1
aws-ecs-1-nvidia
aws-ecs-2
aws-ecs-2-nvidia
We also have variants that are designed to be Kubernetes worker nodes in VMware:
vmware-k8s-1.24
vmware-k8s-1.25
vmware-k8s-1.26
vmware-k8s-1.27
vmware-k8s-1.28
The following variants are designed to be Kubernetes worker nodes on bare metal:
metal-k8s-1.24
metal-k8s-1.25
metal-k8s-1.26
metal-k8s-1.27
metal-k8s-1.28
The following variants are no longer supported:
- All Kubernetes variants using Kubernetes 1.22 and earlier
We recommend users replace nodes running these variants with the latest variant compatible with their cluster.
Our supported architectures include x86_64
and aarch64
(written as arm64
in some contexts).
🚶 🏃
Bottlerocket is best used with a container orchestrator. To get started with Kubernetes in Amazon EKS, please see QUICKSTART-EKS. To get started with Kubernetes in VMware, please see QUICKSTART-VMWARE. To get started with Amazon ECS, please see QUICKSTART-ECS. These guides describe:
- how to set up a cluster with the orchestrator, so your Bottlerocket instance can run containers
- how to launch a Bottlerocket instance in EC2 or VMware
To see how to provision Bottlerocket on bare metal, see PROVISIONING-METAL.
To build your own Bottlerocket images, please see BUILDING. It describes:
- how to build an image
- how to register an EC2 AMI from an image
To publish your built Bottlerocket images, please see PUBLISHING. It describes:
- how to make TUF repos including your image
- how to copy your AMI across regions
- how to mark your AMIs public or grant access to specific accounts
- how to make your AMIs discoverable using SSM parameters
To improve security, there's no SSH server in a Bottlerocket image, and not even a shell.
Don't panic!
There are a couple out-of-band access methods you can use to explore Bottlerocket like you would a typical Linux system. Either option will give you a shell within Bottlerocket. From there, you can change settings, manually update Bottlerocket, debug problems, and generally explore.
Note: These methods require that your instance has permission to access the ECR repository where these containers live; the appropriate policy to add to your instance's IAM role is AmazonEC2ContainerRegistryReadOnly
.
Bottlerocket has a "control" container, enabled by default, that runs outside of the orchestrator in a separate instance of containerd. This container runs the AWS SSM agent that lets you run commands, or start shell sessions, on Bottlerocket instances in EC2. (You can easily replace this control container with your own just by changing the URI; see Settings.)
In AWS, you need to give your instance the SSM role for this to work; see the setup guide. Outside of AWS, you can use AWS Systems Manager for hybrid environments. There's more detail about hybrid environments in the control container documentation.
Once the instance is started, you can start a session:
- Go to AWS SSM's Session Manager
- Select "Start session" and choose your Bottlerocket instance
- Select "Start session" again to get a shell
If you prefer a command-line tool, you can start a session with a recent AWS CLI and the session-manager-plugin. Then you'd be able to start a session using only your instance ID, like this:
aws ssm start-session --target INSTANCE_ID
With the default control container, you can make API calls to configure and manage your Bottlerocket host. To do even more, read the next section about the admin container. You can access the admin container from the control container like this:
enter-admin-container
Bottlerocket has an administrative container, disabled by default, that runs outside of the orchestrator in a separate instance of containerd.
This container has an SSH server that lets you log in as ec2-user
using your EC2-registered SSH key.
Outside of AWS, you can pass in your own SSH keys.
(You can easily replace this admin container with your own just by changing the URI; see Settings.
To enable the container, you can change the setting in user data when starting Bottlerocket, for example EC2 instance user data:
[settings.host-containers.admin]
enabled = true
If Bottlerocket is already running, you can enable the admin container from the default control container like this:
enable-admin-container
Or you can start an interactive session immediately like this:
enter-admin-container
If you're using a custom control container, or want to make the API calls directly, you can enable the admin container like this instead:
apiclient set host-containers.admin.enabled=true
Once you've enabled the admin container, you can either access it through SSH or execute commands from the control container like this:
apiclient exec admin bash
Once you're in the admin container, you can run sheltie
to get a full root shell in the Bottlerocket host.
Be careful; while you can inspect and change even more as root, Bottlerocket's filesystem and dm-verity setup will prevent most changes from persisting over a restart - see Security.
Rather than a package manager that updates individual pieces of software, Bottlerocket downloads a full filesystem image and reboots into it. It can automatically roll back if boot failures occur, and workload failures can trigger manual rollbacks.
The update process uses images secured by TUF. For more details, see the update system documentation.
There are several ways of updating your Bottlerocket hosts. We provide tools for automatically updating hosts, as well as an API for direct control of updates.
For EKS variants of Bottlerocket, we recommend using the Bottlerocket update operator for automated updates.
For the ECS variant of Bottlerocket, we recommend using the Bottlerocket ECS updater for automated updates.
The Bottlerocket API includes methods for checking and starting system updates. You can read more about the update APIs in our update system documentation.
apiclient knows how to handle those update APIs for you, and you can run it from the control or admin containers.
To see what updates are available:
apiclient update check
If an update is available, it will show up in the chosen_update
field.
The available_updates
field will show the full list of available versions, including older versions, because Bottlerocket supports safely rolling back.
To apply the latest update:
apiclient update apply
The next time you reboot, you'll start up in the new version, and system configuration will be automatically migrated. To reboot right away:
apiclient reboot
If you're confident about updating, the apiclient update apply
command has --check
and --reboot
flags to combine the above actions, so you can accomplish all of the above steps like this:
apiclient update apply --check --reboot
See the apiclient documentation for more details.
The system will automatically roll back if it's unable to boot. If the update is not functional for a given container workload, you can do a manual rollback:
signpost rollback-to-inactive
reboot
This doesn't require any external communication, so it's quicker than apiclient
, and it's made to be as reliable as possible.
Here we'll describe the settings you can configure on your Bottlerocket instance, and how to do it.
(API endpoints are defined in our OpenAPI spec if you want more detail.)
You can see the current settings with an API request:
apiclient get settings
This will return all of the current settings in JSON format. For example, here's an abbreviated response:
{"motd": "...", {"kubernetes": {}}}
You can change settings like this:
apiclient set motd="hi there" kubernetes.node-labels.environment=test
You can also use a JSON input mode to help change many related settings at once, and a "raw" mode if you want more control over how the settings are committed and applied to the system. See the apiclient README for details.
If you know what settings you want to change when you start your Bottlerocket instance, you can send them in the user data.
In user data, we structure the settings in TOML form to make things a bit simpler. Here's the user data to change the message of the day setting, as we did in the last section:
[settings]
motd = "my own value!"
If your user data is over the size limit of the platform (e.g. 16KiB for EC2) you can compress the contents with gzip.
(With aws-cli, you can use --user-data fileb:https:///path/to/gz-file
to pass binary data.)
Here we'll describe each setting you can change.
Note: You can see the default values (for any settings that are not generated at runtime) by looking in the defaults.d
directory for a variant, for example aws-ecs-2.
When you're sending settings to the API, or receiving settings from the API, they're in a structured JSON format. This allows modification of any number of keys at once. It also lets us ensure that they fit the definition of the Bottlerocket data model - requests with invalid settings won't even parse correctly, helping ensure safety.
Here, however, we'll use the shortcut "dotted key" syntax for referring to keys. This is used in some API endpoints with less-structured requests or responses. It's also more compact for our needs here.
In this format, "settings.kubernetes.cluster-name" refers to the same key as in the JSON {"settings": {"kubernetes": {"cluster-name": "value"}}}
.
NOTE: bottlerocket.dev now contains a complete, versioned setting reference. This documents retains the headings below for existing link and bookmark compatability. Please update your bookmarks and check out bottlerocket.dev for future updates to the setting reference.
See the settings.motd
reference.
See the settings.kubernetes.*
reference.
See the settings.ecs.*
reference.
See the settings.cloudformation.*
reference.
See the settings.autoscaling.*
reference.
See the settings.oci-hooks.*
reference.
See the settings.oci-defaults.*
reference.
See the "Capabilities Settings" section in the settings.oci-defaults.*
reference.
See the "Resource Limits Settings" section in the settings.oci-defaults.*
reference.
See the settings.container-registry.*
reference.
See the settings.container-runtime.*
reference.
See the settings.updates.*
reference.
See the settings.network.*
reference.
See the "Proxy Settings" section in the settings.networks.*
reference.
See the settings.metrics.*
reference.
See the settings.ntp.*
reference.
See the settings.kernel.*
reference.
See the settings.boot.*
reference.
See the settings.pki.*
reference.
See the settings.host-containers.*
reference.
See the Host Containers documentation.
See the settings.bootstrap-containers.*
reference as well as the Bootstrap Containers documentation
Both bootstrap and superpowered host containers are configured with the /.bottlerocket/rootfs/mnt
bind mount that points to /mnt
in the host, which itself is a bind mount of /local/mnt
.
This bind mount is set up with shared propagations, so any new mount point created underneath /.bottlerocket/rootfs/mnt
in any bootstrap or superpowered host container will propagate across mount namespaces.
You can use this feature to configure ephemeral disks attached to your hosts that you may want to use on your workloads.
Platform-specific settings are automatically set at boot time by early-boot-config based on metadata available on the running platform. They can be overridden for testing purposes in the same way as other settings.
See the settings.aws.*
reference.
You can use logdog
through the admin container to obtain an archive of log files from your Bottlerocket host.
SSH to the Bottlerocket host or apiclient exec admin bash
to access the admin container, then run:
sudo sheltie
logdog
This will write an archive of the logs to /var/log/support/bottlerocket-logs.tar.gz
.
This archive is accessible from host containers at /.bottlerocket/support
.
You can use SSH to retrieve the file.
Once you have exited from the Bottlerocket host, run a command like:
ssh -i YOUR_KEY_FILE \
ec2-user@YOUR_HOST \
"cat /.bottlerocket/support/bottlerocket-logs.tar.gz" > bottlerocket-logs.tar.gz
(If your instance isn't accessible through SSH, you can use SSH over SSM.)
For a list of what is collected, see the logdog command list.
Bottlerocket provides support to collect kernel crash dumps whenever the system kernel panics.
Once this happens, both the dmesg log and vmcore dump are stored at /var/log/kdump
, and the system reboots.
There are a few important caveats about the provided kdump support:
- Currently, only vmware variants have kdump support enabled
- The system kernel will reserve 256MB for the crash kernel, only when the host has at least 2GB of memory; the reserved space won't be available for processes running in the host
- The crash kernel will only be loaded when the
crashkernel
parameter is present in the kernel's cmdline and if there is memory reserved for it
Bottlerocket's nvidia
variants include the required packages and configurations to leverage NVIDIA GPUs.
Currently, the following NVIDIA driver versions are supported in Bottlerocket:
- 470.X
- 515.X
The official AMIs for these variants can be used with EC2 GPU-equipped instance types such as: p2
, p3
, p4
, g3
, g4dn
, g5
and g5g
.
Note that older instance types, such as p2
, are not supported by NVIDIA driver 515.X
and above.
You need to make sure you select the appropriate AMI depending on the instance type you are planning to use.
Please see QUICKSTART-EKS for further details about Kubernetes variants, and QUICKSTART-ECS for ECS variants.
🛡️ 🦀
To learn more about security features in Bottlerocket, please see SECURITY FEATURES. It describes how we use features like dm-verity and SELinux to protect the system from security threats.
To learn more about security recommendations for Bottlerocket, please see SECURITY GUIDANCE. It documents additional steps you can take to secure the OS, and includes resources such as a Pod Security Policy for your reference.
In addition, almost all first-party components are written in Rust. Rust eliminates some classes of memory safety issues, and encourages design patterns that help security.
Bottlerocket is built from source using a container toolchain. We use RPM package definitions to build and install individual packages into an image. RPM itself is not in the image - it's just a common and convenient package definition format.
We currently package the following major third-party components:
- Linux kernel (background, 5.10 packaging, 5.15 packaging)
- glibc (background, packaging)
- Buildroot as build toolchain (background, via the SDK)
- GRUB, with patches for partition flip updates (background, packaging)
- systemd as init (background, packaging)
- wicked for networking (background, packaging)
- containerd (background, packaging)
- Kubernetes (background, packaging)
- aws-iam-authenticator (background, packaging)
- Amazon ECS agent (background, packaging)
For further documentation or to see the rest of the packages, see the packaging directory.
The Bottlerocket image has two identical sets of partitions, A and B. When updating Bottlerocket, the partition table is updated to point from set A to set B, or vice versa.
We also track successful boots, and if there are failures it will automatically revert back to the prior working partition set.
The update process uses images secured by TUF. For more details, see the update system documentation.
There are two main ways you'd interact with a production Bottlerocket instance. (There are a couple more exploration methods above for test instances.)
The first method is through a container orchestrator, for when you want to run or manage containers.
This uses the standard channel for your orchestrator, for example a tool like kubectl
for Kubernetes.
The second method is through the Bottlerocket API, for example when you want to configure the system.
There's an HTTP API server that listens on a local Unix-domain socket. Remote access to the API requires an authenticated transport such as SSM's RunCommand or Session Manager, as described above. For more details, see the apiserver documentation.
The apiclient can be used to make requests. They're just HTTP requests, but the API client simplifies making requests with the Unix-domain socket.
To make configuration easier, we have early-boot-config, which can send an API request for you based on instance user data. If you start a virtual machine, like an EC2 instance, it will read TOML-formatted Bottlerocket configuration from user data and send it to the API server. This way, you can configure your Bottlerocket instance without having to make API calls after launch.
See Settings above for examples and to understand what you can configure.
You can also access host containers through the API using apiclient exec.
The server and client are the user-facing components of the API system, but there are a number of other components that work together to make sure your settings are applied, and that they survive upgrades of Bottlerocket.
For more details, see the API system documentation.
Bottlerocket operates with two default storage volumes.
- The root device, holds the active and passive partition sets. It also contains the bootloader, the dm-verity hash tree for verifying the immutable root filesystem, and the data store for the Bottlerocket API.
- The data device is used as persistent storage for container images, container orchestration, host-containers, and bootstrap containers.
On boot Bottlerocket will increase the data partition size to use all of the data device. If you increase the size of the device, you can reboot Bottlerocket to extend the data partition. If you need to extend the data partition without rebooting, have a look at this discussion.