Skip to content

selimcavas/LLM-SEC-Report-Analyzer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLM Supported SEC Report Analyzer Chat Assistant

Project Overview

The LLM Supported SEC Report Analyzer Chat Assistant is designed to simplify the analysis of critical financial documents, such as earning call transcripts, SEC filings, and financial statements. This project aims to assist financial analysts and investors by providing a tool that can quickly extract and analyze data from these resources.

Table of Contents

Problem Statement

Analyzing financial documents such as earning call transcripts, SEC filings, and financial statement tables is complex and inconvenient. There is a need for a tool that can assist in extracting and analyzing crucial data from these sources efficiently.

Goal

The primary goal of our application is to help financial analysts and investors by:

  • Quickly bringing desired data from financial statement tables and earning call transcripts.
  • Assisting users in gaining insights from SEC filings and earnings call reports.
  • Providing stock price visualizations and predictions.

User Interface

image

Our application features a conversation-based chatbot with a graphical user interface (GUI), enabling users to extract data from the following resources:

  • Yahoo Finance Data: Income statement, Balance Sheet, and Cash Flow.
  • SEC Filings: 10-K and 10-Q Reports.
  • Earning Call Transcripts: Transcript texts from NASDAQ 100 companies.

System Architecture

System Architecture

Technology Stack

  • Python
  • Streamlit
  • Pinecone
  • LangChain
  • Tensorflow
  • Mixtral 8x7B Instruct LLM

Tools and Features

Retrieval Augmented Generation (RAG)

Since LLM models have a knowledge cutoff and cannot access up-to-date information, we use the RAG approach to enable the LLM to work on recent data.

Financial Data Search Tool

The text2SQL tool enables the LLM to analyze and execute queries over the SQL Database.

Earning Call Analyzer Tool

This tool enables the LLM to quickly bring crucial insights over the transcripts retrieved by similarity search.

Text Embedding

Each earning call transcript file is split into chunks and embedded using OpenAI’s “text-embedding-ada-002” model, then stored in the Pinecone Index.

Stock Price Prediction Tool

Helps users understand trends and future movements of stock prices by using a sentiment score-supported LSTM.

Sentiment Scoring

The FinBERT-tone model, a fine-tuned version of FinBERT, analyzes the sentiment of financial text, classifying it as positive, negative, or neutral based on 10,000 manually annotated sentences from analyst reports.

Stock Price Visualization Tools

  • Visualizes stock prices in the desired range and analyzes changes.
  • Return Comparison tool compares returns of multiple tickers in one graph with an analysis comment.

Generate Report Tool

Combines all chat histories and produces a concise PDF report, analyzing and providing insights about the future of a company.

Tool Testing and Evaluation

  • Challenges: Our LLM may sometimes hallucinate, causing drops in accuracy. Response times may increase due to the longevity of generated answers or connections made.

  • Evaluation Metrics:

    • Only LSTM: Uses stock prices only.
    • Sentiment Supported LSTM: Uses both stock prices and sentiment scores.
    Metric Only LSTM Sentiment Supported LSTM
    Loss 0.010256 0.003475
    MAE 0.030057 0.040420
    MAPE 0.081722 0.083317
    R2 0.822231 0.676072

Project by:

  • Salih Metin Arkanöz
  • Selim Çavaş

Releases

No releases published

Packages

No packages published

Languages