Skip to content

Learn machine learning with Python through data exploration, visualization, and key libraries such as NumPy, Pandas, Matplotlib, and Scikit-learn.

Notifications You must be signed in to change notification settings

sandhavi/ml_workshop

Repository files navigation

Python for Machine Learning

Welcome to the Python for Machine Learning repository! This repository is designed to introduce beginners to the fundamental concepts of machine learning and how to apply them using Python. The resources provided here will help you set up your environment, explore essential Python libraries, and work hands-on with data.

Table of Contents

Introduction to Machine Learning

Machine Learning (ML) is a technology that enables computers to learn from data and improve their performance over time without explicit programming. It allows computers to recognize patterns and make predictions or decisions based on data.

Why Python for Machine Learning?

Python is widely used in the field of machine learning due to several key advantages:

  • Ease of Use: Python's simple syntax makes it easy to learn and apply.
  • Rich Ecosystem: A large number of libraries and frameworks support machine learning tasks.
  • Community Support: A strong community contributes to extensive resources and documentation.
  • Industry Adoption: Python is the preferred language in many industry applications of ML.

Setting Up the Environment

Before diving into machine learning with Python, it's important to set up a proper environment. You can choose to work locally on your machine or use cloud-based platforms like Google Colab.

Local Setup

  1. Python: Ensure you have Python 3.6+ installed.
  2. Jupyter Notebook: Install Jupyter Notebook to create and share documents that contain live code, equations, and visualizations.
  3. Install Required Libraries:
    pip install numpy pandas matplotlib seaborn scikit-learn

Google Colab

Google Colab is a cloud-based platform that allows you to write and execute Python code in a Jupyter notebook environment without any setup.

  • Access Google Colab here.

Python Libraries for Machine Learning

This repository focuses on the following essential Python libraries:

  • NumPy: Supports large multi-dimensional arrays and matrices, and provides mathematical functions to operate on them.
  • Pandas: A library for data manipulation and analysis, offering data structures like Series and DataFrame.
  • Matplotlib: A comprehensive library for creating static, animated, and interactive visualizations in Python.
  • Seaborn: Built on top of Matplotlib, it provides a high-level interface for drawing attractive and informative statistical graphics.
  • Scikit-learn: A popular machine learning library offering simple and efficient tools for data mining, analysis, and ML algorithms.

Hands-On Data Exploration

This section provides hands-on examples to help you load, explore, and visualize data:

  1. Loading and Exploring Data: Learn how to load datasets and perform basic exploratory data analysis (EDA).
  2. Visualization: Use Matplotlib and Seaborn to create various types of plots to visualize data.
  3. Exploring Relationships Between Features: Understand how to identify relationships between different features in your dataset.

Useful Links

Here are some additional resources to help you learn more about machine learning with Python:


Happy learning and coding! Feel free to reach me on LinkedIn if you have any questions or suggestions.

About

Learn machine learning with Python through data exploration, visualization, and key libraries such as NumPy, Pandas, Matplotlib, and Scikit-learn.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published