Skip to content

ruiyiw/VT-summ

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

85 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Variational-Transformer

License: MIT

🔆 This is the PyTorch implementation of the paper:

Variational Transformers for Diverse Response Generation. Zhaojiang Lin, Genta Indra Winata, Peng Xu, Zihan Liu, Pascale Fung [PDF]

This code has been written using PyTorch >= 0.4.1. If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:

@article{lin2020variational,
  title={Variational Transformers for Diverse Response Generation},
  author={Lin, Zhaojiang and Winata, Genta Indra and Xu, Peng and Liu, Zihan and Fung, Pascale},
  journal={arXiv preprint arXiv:2003.12738},
  year={2020}
}

Global Variational Transformer (GVT):

The GVT is the extension of CVAE in Zhao et al. (2017), which modeling the discourse-level diversity with a global latent variable.

Sequential Variational Transformer (SVT):

SVT, inspired by variational autoregressive models (Goyal et al., 2017; Du et al., 2018), incorporates a sequence of latent variables into decoding process by using a novel variational decoder layer. Unlike previous approaches (Zhao et al., 2017; Goyal et al., 2017; Du et al., 2018), SVT uses Non-causal Multi-head Attention, which attend to future tokens for computing posterior latent variables instead of using an additional encoder.

Dependency

Check the packages needed or simply run the command

❱❱❱ pip install -r requirements.txt

Pre-trained glove embedding: glove.6B.300d.txt inside folder /vectors/.

Experiment

Dataset

Three datasets (Mojitalk, PersonaChat, EmpatheticDialogue) are used in this work. Mojitalk is single-turn dialogue dataset, PersonaChat and EmpatheticDialogue are multiturn dialogue datasets. EmpatheticDialogue is preprocessed and stored in npy format: sys_dialog_texts.train.npy, sys_target_texts.train.npy, sys_emotion_texts.train.npy which consist of parallel list of context (source), response (target) and emotion label (additional label).

Single turn dialogue

Transformer (train&test)

❱❱❱ python3 main.py --model trs --emb_dim 300 --hidden_dim 300 --hop 4 --heads 4 --cuda --batch_size 128 --lr 0.001 --pretrain_emb --kl_ceiling 0.48 --aux_ceiling 1 --full_kl_step 20000 --save_path save/trs_new_bow_batch/ > save/trs_new_bow_batch/out.txt

Use the trained Transformer to initialize GVT: replace model_8999_82.7771_0.0000_0.0000_0.0000_0.0000 with your checkpoint.

GVT (train&test)

❱❱❱ python3 main.py --model cvaetrs --emb_dim 300 --hidden_dim 300 --hop 4 --heads 4 --cuda --batch_size 128 --lr 0.001 --pretrain_emb --kl_ceiling 0.08 --aux_ceiling 1 --full_kl_step 15000 --save_path_pretrained save/trs_new_bow_batch/model_8999_82.7771_0.0000_0.0000_0.0000_0.0000 --save_path save/cvae_new_bow_batch0.08/ > save/cvae_new_bow_batch0.08/out.txt

Same here we pre-trained SVT with MLE

❱❱❱ python3 main.py --model trs --v2 --emb_dim 300 --hidden_dim 300 --hop 4 --heads 4 --cuda --batch_size 128 --lr 0.001 --pretrain_emb --kl_ceiling 0.08 --aux_ceiling 1 --full_kl_step 20000 --num_var_layers 1 --save_path save/trs_v2/ > save/trs_v2/out.txt

Use the trained Transformer to initialize SVT: replace model_8999_4.4207_83.1528_0.0000_0.6200_0.0000 with your checkpoint.

SVT (train&test)

❱❱❱ python3 main.py --model cvaetrs --v2 --emb_dim 300 --hidden_dim 300 --hop 4 --heads 4 --cuda --batch_size 16 --lr 0.0002 --pretrain_emb --kl_ceiling 0.3 --aux_ceiling 1 --full_kl_step 30000 --num_var_layers 1 --save_path_pretrained save/trs_v2/model_8999_4.4207_83.1528_0.0000_0.6200_0.0000 --save_path save/cvae_trs_v2_0.3/ > save/cvae_trs_v2_0.3/out.txt

Multiturn dialogue

Transformer (train&test)

❱❱❱ python3 main.py --model trs --emb_dim 300 --hidden_dim 300 --hop 4 --heads 4 --cuda --batch_size 32 --persona --lr 0.0002 --pretrain_emb --kl_ceiling 0.48 --aux_ceiling 1 --full_kl_step 20000 --dataset empathetic --save_path save/trs_ed_persona/ > save/trs_ed_persona/out.txt

Interact with Transformer

❱❱❱ python3 interact.py --model trs --cuda --persona --dataset empathetic --save_path_pretrained save/trs_ed_persona/model_8999_4.0222_55.8249_0.0000_0.0000_0.0000

Use the trained Transformer to initialize GVT: replace model_5999_4.0928_59.9090_0.0000_1.8200_0.0000 with your checkpoint.

GVT (train&test)

❱❱❱ python3 main.py --model cvaetrs --emb_dim 300 --hidden_dim 300 --hop 4 --heads 4 --cuda --batch_size 32 --persona --lr 0.0002 --pretrain_emb --kl_ceiling 0.05 --aux_ceiling 1 --full_kl_step 12000 --dataset empathetic --save_path_pretrained save/trs_ed_persona/model_5999_4.0928_59.9090_0.0000_1.8200_0.0000 --save_path save/cvae_trs_ed_persona_0.05/ > save/cvae_trs_ed_persona_0.05/out.txt

Interact with GVT

❱❱❱ python3 interact.py --model cvaetrs --cuda --persona --dataset empathetic --save_path_pretrained save/cvae_trs_ed_persona_0.05/model_12999_22.3743_22.9358_0.0000_0.0000_19.2416

Same here we pre-trained SVT with MLE

❱❱❱ python3 main.py --model trs --v2 --emb_dim 300 --hidden_dim 300 --hop 4 --heads 4 --cuda --batch_size 32 --persona --lr 0.0002 --pretrain_emb --num_var_layers 1 --kl_ceiling 0.05 --aux_ceiling 1 --full_kl_step 12000 --dataset empathetic --save_path save/trs_ed_persona_v2/ > save/trs_ed_persona_v2/out.txt

Use the trained Transformer to initialize SVT: replace model_7999_4.0249_55.9739_0.0000_2.0900_0.0000 with your checkpoint.

SVT (train&test)

❱❱❱ python3 main.py --model cvaetrs --v2 --emb_dim 300 --hidden_dim 300 --hop 4 --heads 4 --cuda --batch_size 2 --persona --gradient_accumulation_steps 16 --lr 0.0002 --pretrain_emb --num_var_layers 1 --kl_ceiling 0.6 --aux_ceiling 1 --full_kl_step 12000 --dataset empathetic --save_path_pretrained save/trs_ed_persona_v2/model_7999_4.0249_55.9739_0.0000_2.0900_0.0000 --save_path save/v2_cvae_trs_ed_persona_0.6/ > save/v2_cvae_trs_ed_persona_0.6/out.txt

Interact with SVT

❱❱❱ python3 interact.py --model cvaetrs --v2 --cuda --persona --dataset empathetic --save_path_pretrained save/v2_cvae_trs_ed_persona_0.6/model_15999_4.5419_18.7720_0.0000_0.0000_1.6095 --num_var_layers 1

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published