Skip to content

Open Source toolkit for Visual Data Subset Selection and Summarizartion using Submodular Functions

License

Notifications You must be signed in to change notification settings

rowhanm/vis-dss

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Vis-DSS: Visual Data Subset Selection and Visual Data Summarization Using Submodular Functions

License

Vis-DSS is Licensed under the GNU GENERAL PUBLIC LICENSE. See LICENSE for more details.

Features and Functionalities

  1. Video Summarization
  • SimpleVideoSummarizer (using Color Histogram features)
  • DeepSimVideoSummarizer using Features from a Deep Model and Similarity based functions
  • DeepCoverVideoSummarizer using Features from a Deep Model and Coverage Based Functions
  • EntitySimVideoSummarizer using Entity Models and Features from a Deep Model and Similarity based functions
  • QuerySimVideoSummarizer using Features from a Deep Model, Query Input by user and using Similarity based functions
  1. Image Collection Summarization
  • SimpleImageSummarizer (using Color Histogram features)
  • DeepSimImageSummarizer using Features from a Deep Model and Similarity based functions
  • DeepCoverImageSummarizer using Features from a Deep Model and Coverage Based Functions
  • QuerySimImageSummarizer using Features from a Deep Model, Query Input by user and using Similarity based functions
  1. Data Subset Selection for Image Classification
  • SupervisedDSS (Supervised Data subset selection using the label information in the data subset selection)
  • UnsupervisedDSS (Unsupervised Data subset selection not using the label information in data subset selection)
  1. Diversified Active Learning for Image Classification

Summarization Models (-summaryModel)

  • Facility Location Functions (Representation Models)
  • Disparity Min and Disparity Sum (Diversity Models)
  • Set Cover and Probabilistic Set Cover (Coverage Models)
  • Feature Based Functions (Coverage Models)
  • Graph Cut and Saturated Coverage Functions (Representation Models)

Summarization Algorithms (-summaryAlgo)

  • Budgeted Greedy Algorithm (Lazy or naive greedy algorithm under a budget, say, 60 seconds)
  • Stream Greedy Algorithm (Provide a threshold for summarization, say, 0.001)
  • Coverage Greedy Algorithm (Provide a coverage fraction, say, 0.9 fraction of the video)

Segment Type (-segmentType)

In the case of video summarization, we support two kinds of segmentation algorithms

  • Fixed Length Snippets
  • Shot Detection based Snippets

Dependencies

  • If you just want to compile and build SimpleVideoSummarizer and SimpleImageSummarizer examples, you only need OpenCV 3 (https://github.com/opencv/opencv)
  • For running Deep Video Summarizer examples (with Caffe models), you will need to install Caffe (https://github.com/BVLC/caffe). You just need the CPU version of Caffe
  • For running the Entity based Summarizers you might also need Dlib if you are using the feature extractor algorithms from dlib.

Building and Compiling

  • Modify the CMakeLists.txt to point to yout OpenCV and Caffe locations
  • mkdir build
  • cd build
  • cmake ..
  • make

Example commands to run the executables (Video and Image Summarization)

  1. SimpleVideoSummExample: DisparityMin with Budgeted Summarization ./SimpleVideoSummExample -videoFile <videoFileName> -videoSaveFile <videoSummaryFileName> -summaryModel 0 -segmentType 0 -summaryAlgo 0 -budget 30

  2. SimpleVideoSummExample: Facility Location with Budgeted Summarization ./SimpleVideoSummExample -videoFile <videoFileName> -videoSaveFile <videoSummaryFileName> -summaryModel 2 -segmentType 0 -summaryAlgo 0 -budget 30

  3. SimpleImageSummExample: DisparityMin with Budgeted Summarization ./SimpleImageSummExample -directory ~/Desktop/ivsumm/images/ -imageSaveFile ~/Desktop/ivsumm/images/summary-montage.png -summaryModel 0 -summaryAlgo 0 -budget 10 -summarygrid 100

  4. DeepVideoSummExample DisparityMin with Budgeted Summarization (Using GoogleNet Scene Model) ./DeepVideoSummExample -videoFile <videoFileName> -videoSaveFile <videoSummaryFileName> -summaryModelSim 0 -simcover 0 -segmentType 0 -summaryAlgo 0 -featureLayer loss3/classifier -network_file ../../Models/googlenet_places205/deploy_places205.protxt -trained_file ../../Models/googlenet_places205/googlelet_places205_train_iter_2400000.caffemodel -mean_file ../../Models/hybridCNN/hybridCNN_mean.binaryproto -label_file ../../Models/googlenet_places205/categoryIndex_places205.csv -budget 30

  5. DeepVideoSummExample: Facility Location with Budgeted Summarization (Using GoogleNet Scene Model) ./DeepVideoSummExample -videoFile <videoFileName> -videoSaveFile <videoSummaryFileName> -summaryModelSim 2 -simcover 0 -segmentType 0 -summaryAlgo 0 -featureLayer loss3/classifier -network_file ../../Models/googlenet_places205/deploy_places205.protxt -trained_file ../../Models/googlenet_places205/googlelet_places205_train_iter_2400000.caffemodel -mean_file ../../Models/hybridCNN/hybridCNN_mean.binaryproto -label_file ../../Models/googlenet_places205/categoryIndex_places205.csv -budget 30

  6. DeepVideoSummExample: SetCover with Budgeted Summarization (Using GoogleNet Scene Model) ./DeepVideoSummExample -videoFile <videoFileName> -videoSaveFile <videoSummaryFileName> -summaryModelSim 0 -simcover 1 -segmentType 0 -summaryAlgo 0 -featureLayer loss3/classifier -network_file ../../Models/googlenet_places205/deploy_places205.protxt -trained_file ../../Models/googlenet_places205/googlelet_places205_train_iter_2400000.caffemodel -mean_file ../../Models/hybridCNN/hybridCNN_mean.binaryproto -label_file ../../Models/googlenet_places205/categoryIndex_places205.csv -budget 30

  7. DeepImageSummExample: DisparityMin with Budgeted Summarization (Using GoogleNet Scene Model) ./DeepImageSummExample -directory ~/Desktop/ivsumm/images/ -imageSaveFile ../images/summary-montage.png -summaryModelSim 2 -simcover 0 -summaryAlgo 0 -summarygrid 100 -featureLayer loss3/classifier -network_file ../../Models/googlenet_places205/deploy_places205.protxt -trained_file ../../Models/googlenet_places205/googlelet_places205_train_iter_2400000.caffemodel -mean_file ../../Models/hybridCNN/hybridCNN_mean.binaryproto -label_file ../../Models/googlenet_places205/categoryIndex_places205.csv -budget 10

  8. EntityFaceSummExample: DisparityMin with Budgeted Summarization (Using Resnet Face detection and Dlib feature extractors) ./EntityFaceSummExample -videoFile ~/Desktop/ivsumm/videos/friends.mp4 -imageSaveFile ~/Desktop/ivsumm/videos/friends-collage.png -summaryModel 0 -summaryAlgo 0 -summarygrid 60 -landmarking_model_file ~/Desktop/DNNModels/dlib/shape_predictor_5_face_landmarks.dat -pretrained_resnet_file ~/Desktop/DNNModels/dlib/dlib_face_recognition_resnet_model_v1.dat -featMode 1 -network_file_face ~/Desktop/DNNModels/ResnetFace/deploy.prototxt -trained_file_face ~/Desktop/DNNModels/ResnetFace/res10_300x300_ssd_iter_140000.caffemodel -label_file_face ~/Desktop/DNNModels/ResnetFace/labels.txt -budget 25

About

Open Source toolkit for Visual Data Subset Selection and Summarizartion using Submodular Functions

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published