Skip to content

rockcliff15/dataengineer-transformations-python

 
 

Repository files navigation

Data transformations with Python

This is a collection of Python jobs that are supposed to transform data. These jobs are using PySpark to process larger volumes of data and are supposed to run on a Spark cluster (via spark-submit).

Pre-requisites

We use batect to dockerise the tasks in this exercise. batect is a lightweight wrapper around Docker that helps to ensure tasks run consistently (across linux, mac windows). With batect, the only dependencies that need to be installed are Docker and Java >=8. Every other dependency is managed inside Docker containers. Please make sure you have the following installed and can run them

  • Docker
  • Java >= (1.8)

You could use following instructions as guidelines to install Docker and Java.

# Install pre-requisites needed by batect 
# For mac users: 
scripts/install.sh

# For windows/linux users:
# Please ensure Docker and java >=8 is installed 
scripts\install_choco.ps1
scripts\install.bat

Run tests

Run unit tests

./batect unit-test

Run integration tests

./batect integration-test

Run style checks

./batect style-checks

This is running the linter and a type checker.

Jobs

There are two applications in this repo: Word Count, and Citibike.

Currently, these exist as skeletons, and have some initial test cases which are defined but ignored. For each application, please un-ignore the tests and implement the missing logic.

Word Count

A NLP model is dependent on a specific input file. This job is supposed to preprocess a given text file to produce this input file for the NLP model (feature engineering). This job will count the occurrences of a word within the given text file (corpus).

There is a dump of the datalake for this under resources/word_count/words.txt with a text file.

Input

Simple *.txt file containing text.

Output

A single *.csv file containing data similar to:

"word","count"
"a","3"
"an","5"
...

Run the job

JOB=jobs/word_count.py ./batect run-job 

Citibike

For analytics purposes the BI department of a bike share company would like to present dashboards, displaying the distance each bike was driven. There is a *.csv file that contains historical data of previous bike rides. This input file needs to be processed in multiple steps. There is a pipeline running these jobs.

citibike pipeline

There is a dump of the datalake for this under resources/citibike/citibike.csv with historical data.

Ingest

Reads a *.csv file and transforms it to parquet format. The column names will be sanitized (whitespaces replaced).

Input

Historical bike ride *.csv file:

"tripduration","starttime","stoptime","start station id","start station name","start station latitude",...
364,"2017-07-01 00:00:00","2017-07-01 00:06:05",539,"Metropolitan Ave & Bedford Ave",40.71534825,...
...
Output

*.parquet files containing the same content

"tripduration","starttime","stoptime","start_station_id","start_station_name","start_station_latitude",...
364,"2017-07-01 00:00:00","2017-07-01 00:06:05",539,"Metropolitan Ave & Bedford Ave",40.71534825,...
...
Run the job
JOB=jobs/citibike_ingest.py ./batect run-job

Distance calculation

This job takes bike trip information and calculates the "as the crow flies" distance traveled for each trip. It reads the previously ingested data parquet files.

Hint:

Input

Historical bike ride *.parquet files

"tripduration",...
364,...
...
Outputs

*.parquet files containing historical data with distance column containing the calculated distance.

"tripduration",...,"distance"
364,...,1.34
...
Run the job
JOB=jobs/citibike_distance_calculation.py ./batect run-job

Running the code outside container

If you would like to run the code in your laptop locally without containers then please follow instructions here.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 51.0%
  • Batchfile 24.1%
  • Shell 19.6%
  • Dockerfile 2.6%
  • Makefile 1.8%
  • PowerShell 0.9%