Skip to content

A framework for Differential Evolution with adaptive selection of operators and parameters.

License

Notifications You must be signed in to change notification settings

rickboks/auto-DE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

auto-DE

A framework for Differential Evolution with adaptive selection of operators and parameters. The accompanying paper, with documentation about the structure of the framework and all its components, will be provided soon. The generated algorithm(s) can be benchmarked on BBOB. Many options can be configured using command-line parameters, listed below. To compile, simply run:

make

Then, to run an experiment:

./experiment <options>

Parameters

Flags Meaning Examples
-d, --dimensions Comma-separated list of dimensionalities of the problems -d 2,3,5
-f, --functions Comma-separated list or range notation of functions to include -f 1-5 or -f 4,14,21
-i, --instances Comma-separated list or range notation of instances to include -i 1-5 or -i 1,3,5
-m, --mutation Comma-separated list of mutation options to use -m BE1,RA1,TB2
-c, --crossover Comma-separated list of crossover options to use -c B,E
-F Mutation rate, used when parameter adaptation is disabled -F 0.9
-C, --Cr Crossover rate, used when parameter adaptation is disabled -C 0.5
--strategy Strategy/operator adaptation method --strategy A
--parameter Parameter adaptation method --parameter S
--credit Configuration credit assignment method --credit CO
--reward Configuration reward assignment method --reward ER
--quality Configuration quality update method --quality WS
--probability Configuration selection probability update method --probability AP
--constraint Boundary constraint handling method --constraint RS
--id String identifier of the algorithm (used for logging) --id DE
--alpha Alpha parameter used by the Weighted Sum (WS) quality method --alpha 0.4
--beta Beta parameter used by the Adaptive Pursuit (AP) probability method --beta 0.6
--gamma Gamma parameter used by Adaptive Pursuit and Probability Matching (controls p_min) --gamma 3
--popsize-multiplier Number by which to multiply the dimensionality of the problem to obtain the population size --popsize-multiplier 5
--budget-multiplier Number by which to multiply the dimensionality of the problem to obtain the evaluation budget --budget-multiplier 10000
--independent-runs Number of times each problem instance should be repeated --independent-runs 5
--log-activations Activate operator activation logging. Optional argument controls the interval in terms of iterations --log-activations or --log-activations 10
--log-parameters Activate parameter logging. Optional argument controls the interval in terms of iterations --log-parameters or --log-parameters 10
--log-positions Activate logging of solution positions. Optional argument controls the interval in terms of iterations --log-positions or --log-positions 10
--log-diversity Activate population diversity logging. Optional argument controls the interval in terms of iterations --log-diversity or --log-diversity 10
--log-repairs Activate logging of percentages of repaired solutions. Optional argument controls the interval in terms of iterations --log-repairs or --log-repairs 10
--coco-log-level Logging level for COCO --coco-log-level warning

Operator adaptation strategy options

Shorthand Meaning
A Adaptive strategy
C Constant strategy (no adaptation)
R Random strategy

Parameter adaptation options (F and Cr)

Shorthand Meaning
S SHADE parameter adaptation
C Constant parameters (no adaptation)

Mutation options

Shorthand Meaning
RA1 rand/1
TB1 target-to-best/1
TB2 target-to-best/2
TR1 target-to-rand/1
TP1 target-to-pbest/1
BE1 best/1
BE2 best/2
RA2 rand/2
R2D rand/2/dir
NSD NSDE
TRI trigonometric
TO1 two-opt/1
TO2 two-opt/2
PRX proximity-based rand/1
RAN ranking-based target-to-pbest/1

Crossover options

Shorthand Meaning
B Binomial
E Exponential

Boundary Constraint Handling Method options

Shorthand Meaning
DP Death Penalty
RS Resampling
RI Reinitialization
PR Projection
RF Reflection
WR Wrapping
TR Boundary Transformation
RB Rand Base
MB Midpoint Base
MT Midpoint Target
PM Projection to Midpoint
PB Projection to Base

Credit assignment options

Shorthand Meaning
DR Diversity ratio
SD Squared diversity ratio
FD Fitness improvement scaled by diversity ratio
FS Fitness improvement scaled by squared diversity ratio
FI Fitness improvement
CO Compass
PA Pareto dominance

Reward assignment options

Shorthand Meaning
AN Average normalized reward
AA Average absolute reward
EN Extreme normalized reward
EA Extreme absolute reward
ER Extreme rank reward
AR Average rank reward

Quality assignment options

Shorthand Meaning
WS Weighted sum

Probability update methods

Shorthand Meaning
AP Adaptive Pursuit
PM Probability Matching

About

A framework for Differential Evolution with adaptive selection of operators and parameters.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published