Skip to content

rave974/neural-speech

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 

Repository files navigation

complete instructions for tts/asr repos
donate

content

  • tts
    • melspec generators
      • tacotron2 (nvidia)
    • vocoders
      • end to end
      • seq to seq
  • asr

first time set-up (ubuntu 18.04.5 lts)

sudo apt update;sudo apt upgrade -y  
sudo apt install wget git python3 python3-pip python3-venv nvidia-driver-460 -y
# (cuda+cudnn)

how to make v. env

# (replace name with your project name)
mkdir name
python3.6 -m venv name/env  
source name/env/bin/activate 
pip install -U pip setuptools wheel  
cd name

tacotron2 (nvidia)
source

# (make v. env)
pip install torch==1.4.0 torchvision==0.5.0 #cuda 10.1 (update 2)
export CUDA_HOME=/usr/local/cuda #if apex setup gives error
git clone https://github.com/NVIDIA/apex
pip install --global-option="--cpp_ext" --global-option="--cuda_ext" ./apex
git clone https://www.github.com/nvidia/tacotron2
cd tacotron2
git submodule init; git submodule update
# (in requirements.txt delete numpy==1.13.3)
pip install numpy==1.16 numba==0.48 tensorboard==2.5.0 jupyter
pip install -r req*

inference

# (download waveglow and tacotron checkpoints)  
# (write in terminal: "jupyter notebook" and navigate to "inference.ipynb")  
# (adjust checkpoint paths and run)

train

prepare dataset and filelists (default test dataset)

wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2 (inside tacotron2 git cloned folder)   
tar -xvf *.tar.bz2  
sed -i -- 's,DUMMY,LJSpeech-1.1/wavs,g' filelists/*.txt 

edit hparams.py (batch size, filelists location, amp, text cleaners)
edit text/symbols.py (add symbols for trained language)
single gpu

python train.py --output_directory=outdir --log_directory=logdir

multiple gpu

python multiproc train.py --output_directory=outdir --log_directory=logdir --n_gpus <number of gpus>

continue training. non-english language can be trained faster by continuing to train on english checkpoint. non-english continued checkpoint can be inferenced with english waveglow checkpoint. after 100 epochs good speech quality on a dataset with 3700wav files

python multiproc train.py --output_directory=outdir --log_directory=logdir -c tacotron2_statedict.pt --warm_start

About

complete instructions for tts/asr repos

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published