Skip to content

TweeToxicity is a program that analyzes user profiles or hashtags based on recent tweets. The program utilizes machine learning to give Twitter users an appropriate score according to their tweets or retweets. This program is meant for educational purposes and no ill intetions existed prior to creating this program.

Notifications You must be signed in to change notification settings

pri1311/TweeToxicity

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


TweeToxicity

Twitter Profile Sentiment Analyzer

📖 Table of Contents

Table of Contents

-----------------------------------------------------

About the Project

TweeToxicity is a program that analyzes user profiles or hastags based on the recent tweets. The program utilizes machine learning to give Twitter users an appropriate score according to their tweets or retweets. This program is meant for educational purposes and no ill intetions existed prior to creating this program.

-----------------------------------------------------

Screenshots

Hashtag Screenshot User Screenshot

-----------------------------------------------------

Tech Stack

Client:

Server:

-----------------------------------------------------

Models

DataSet Used for Training : Sentiment140

Model Training Testing
Name Settings Accuracy F1 Score Accuracy F1 Score
Logistic Regression Count Vect. & Lemmatization Used 79.63% 0.8008 78.71% 0.7929
TF-IDF & Lemmatization Used 80.31% 0.8061 78.89% 0.7930
Multinomial Naive Bayes Count Vect. & Lemmatization Used 78.48% 0.7838 78.71% 0.7756
TF-IDF & Lemmatization Used 79.81% 0.7961 76.64% 0.7664
Bernoulli Naive Bayes Count Vect. & Lemmatization Used 78.53% 0.7875 77.71% 0.7803
TF-IDF & Lemmatization Used 80.15% 0.8052 77.68% 0.7791
Decision Tree Classifier Count Vect. & Lemmatization Used, Decision Tree Parameters : {max_depth=50} 72.91% 0.7630 69.45% 0.7334
TF-IDF & Lemmatization Used, Decision Tree Parameters : {max_depth=50} 73.66% 0.7667 69.13% 0.7297
Linear Support Vector Machine Count Vect. & Lemmatization Used 82.92% 0.8309 78.38% 0.7867
TF-IDF & Lemmatization Used 80.36% 0.8051 78.28% 0.7733
Random Forest Classifier Count Vect. & Lemmatization Used, Random Forest Parameters : {max_depth=25} 74.65% 0.7615 74.04% 0.7566
TF-IDF & Lemmatization Used, Random Forest Parameters : {max_depth=25} 74.80% 0.7619 74.00% 0.7553
Gradient Boosting Classifier TF-IDF { min_df=5 } & Lemmatization Used . Gradient Boosting Parameters : {lr=1.25, n=100, depth=25} 74.80% 0.7619 74.00% 0.7553
TF-IDF { min_df=5 } & Lemmatization Used . Gradient Boosting Parameters : {lr=1.25, n=100, depth=25} 85.99% 0.8626 77.49% 0.7791
XGBoost Classifier Count Vect. & Lemmatization Used 75.29% 0.7661 75.21% 0.7662
TF-IDF & Lemmatization Used 75.39% 0.7683 75.14% 0.7667

-----------------------------------------------------

Run Locally

Clone the project

  git clone https://github.com/pri1311/TweeToxicity

Install dependencies in server folder.

  cd server
  python -m venv env
  source env/bin/activate
  pip install -r requirements.txt

Generate environment variables and fill in the values.

  cp .env.example .env

Your .env is ignored by git, which you can see in .gitignore, and so, it's safe!

Starting Development Server

  python server.py

Install dependencies in client folder.

  cd ../client # If you are in ./server
  npm i

Starting Client

  npm start

At the end of this, you should have

  • server running at https://127.0.0.1:5002/
  • new_client running at https://localhost:3000/

-----------------------------------------------------

Environment Variables

To run this project, you will need to add the following environment variables to your .env file

API_KEY : Twitter API/Consumer Key

API_KEY_SECRET : Twitter API/Consumer Secret

BEARER_TOKEN : Twitter Bearer Token

ACCESS_TOKEN : Twitter Access Token

ACCESS_TOKEN_SECRET : Twitter Access Secret

-----------------------------------------------------

References

About

TweeToxicity is a program that analyzes user profiles or hashtags based on recent tweets. The program utilizes machine learning to give Twitter users an appropriate score according to their tweets or retweets. This program is meant for educational purposes and no ill intetions existed prior to creating this program.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages