Skip to content

physicslog/maxEigenValueGPU

Repository files navigation

NVIDIA GPU Calculator to calculate largest eigenvalue of a huge matrix using shift-inverse method

Author: Damodar Rajbhandari (2023-Jan-01 - Last Update: 2023-Feb-21)

Usage
# Shifted-inverse power method using cuSolver
make
./maxeigenvalue mtxs/L11.mtx

# Power method using cuSparse and thrust
make mainpower
./maxeigenvaluepower mtxs/L11.mtx

# Compile Shifted-inverse power method, power method, and Spectra library
make all
Software Dependencies
Hardware Requirements
  • Code ran on NVIDIA GeForce RTX 2080 Ti and CUDA Version 11.7. Check yours using nvidia-smi -q command.

CPU Result Comparison
  • Used Spectra version 1.0.1 on the top of Eigen3 version 3.4.0
  • Code ran on Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz with 125GB RAM and Arch GNU/Linux x86-64 with Linux kernel: 5.15.41-1-lts. Check yours using these commands: lscpu to get CPU details, free -g -h -t to get RAM details, and cat /etc/os-release OS details.
Usage
make mainspectra
./maxeigenvaluespectra mtxs/dL22.mtx

Performance Comparison of GPU Power Method Vs Spectra Library

  • Please install hyperfine. It is a command-line benchmarking tool.
    • It can be installed via conda from the conda-forge channel:
      conda install -c conda-forge hyperfine
      

Here are the results:

  • Using power method on GPU (unoptimized code, without using tolerance for convergence. See: computeMaxEigenvaluePowerMethod)
    hyperfine './maxeigenvaluepower mtxs/dL22.mtx'
    
    • Results:
      Benchmark 1: ./maxeigenvaluepower mtxs/dL22.mtx
        Time (mean ± σ):     14.282 s ±  0.043 s    [User: 12.608 s, System: 1.569 s]
        Range (min … max):   14.241 s … 14.373 s    10 runs
      
  • Using power method on GPU (optimized code, using tolerance for convergence. See computeMaxEigenvaluePowerMethodOptimized)
    hyperfine './maxeigenvaluepower mtxs/dL22.mtx'
    
    • Results:
      Benchmark 1: ./maxeigenvaluepower mtxs/dL22.mtx
        Time (mean ± σ):     13.782 s ±  0.038 s    [User: 12.112 s, System: 1.569 s]
        Range (min … max):   13.726 s … 13.873 s    10 runs
      
  • Using Spectra library on CPU
    hyperfine './maxeigenvaluespectra mtxs/dL22.mtx'
    
    • Results:
      Benchmark 1: ./maxeigenvaluespectra mtxs/dL22.mtx
        Time (mean ± σ):      2.485 s ±  0.012 s    [User: 2.478 s, System: 0.007 s]
        Range (min … max):    2.466 s …  2.506 s    10 runs
      

Notes

  • maxeigenvalue which is based on cusolverSpScsreigvs doesnot work for larger matrices. For example: mtx/dL22.mtx.
  • maxeigenvaluepower doesnot work for mtx/dL00.mtx or mtx/L00.mtx if you use computeMaxEigenvaluePowerMethod but for others in mtx/ directory; it works fine. This is because we set the initial vector x_i sets to 1.0 for all its elements. This initial vector may gives rise to an orthogonal vector with eigenvector for some matrices. Ideally choosing a random vector such that its norm is 1 and entries is mostly non-zero (because $Ax = 0$ if $x$ is $0$) allows the chance to decrease that our vector is orthogonal to the eigenvector. It is done in computeMaxEigenvaluePowerMethodOptimized function.

About

Code shared for NVIDIA discussion forum regarding cusolverSpScsreigvsi API Segmentation Fault

Resources

Stars

Watchers

Forks

Languages