Skip to content

orenmel/lexsub

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Lexical Substitution Evaluation

This code was used to perform the lexical substitution evaluation described in the following papers:

[1] A Simple Word Embedding Model for Lexical Substitution Oren Melamud, Omer Levy, Ido Dagan. Workshop on Vector Space Modeling for NLP (VSM), 2015 [pdf].

[2] context2vec: Learning Generic Context Embedding with Bidirectional LSTM
Oren Melamud, Jacob Goldberger, Ido Dagan. CoNLL, 2016 [pdf].

Requirements

  • Python 2.7
  • NLTK 3.0) - optional (only required for the AWE baseline and MSCC evaluation)
  • Numpy
  • context2vec - for the context2vec evaluation

Datasets

This repository contains preprocessed data files based on the datasets introduced by the following papers:

[3] Semeval-2007 task 10: English lexical substitution task Diana McCarthy, Roberto Navigli, SemEval 2007.
(files with the prefix 'lst' under the 'dataset' directory)

[4] What substitutes tell us-analysis of an ”all-words” lexical substitution corpus. Gerhard Kremer,Katrin Erk, Sebastian Pado, Stefan Thater. EACL, 2014.
(files with the prefix 'coinco' under the 'dataset' directory)

Evaluating the word embedding model [1]

  • Download the word embeddings, context embeddings from [here]
  • Preprocess the embedding files:
python jcs/text2numpy.py <word-embeddings-filename> <word-embeddings-filename>
python jcs/text2numpy.py <context-embeddings-filename> <context-embeddings-filename>
  • To perform the lexical substitution evaluation run (replace the example datasets files and params below as you wish):
python jcs/jcs_main.py --inferrer emb -vocabfile datasets/ukwac.vocab.lower.min100 -testfile datasets/lst_all.preprocessed -testfileconll datasets/lst_all.conll -candidatesfile datasets/lst.gold.candidates -embeddingpath <word-embeddings-filename> -embeddingpathc <context-embeddings-filename> -contextmath mult --debug -resultsfile <result-file>
  • This will create the following output files:
    • <result-file>
    • <result-file>.ranked
    • <result-file>.generate.oot
    • <result-file>.generate.best
  • Run the following to compute the candidate ranking GAP score. The results will be written to <gap-score-file>.
python jcs/evaluation/lst/lst_gap.py ~/datasets/lst_all.gold <result-file>.ranked <gap-score-file> no-mwe
  • Run the following to compute the OOT and BEST substitute prediction scores. The results will be written to <xxx-score-file>. score.pl was distributed in [3].
perl dataset/score.pl \<result-file\>.generate.oot datasets/lst_all.gold -t oot > \<oot-score-file\>
perl dataset/score.pl \<result-file\>.generate.best datasets/lst_all.gold -t best > \<best-score-file\>

Evaluating the context2vec model [2]

  • See context2vec for how to download or train a <context2vec-model>.
  • To perform the lexical substitution evaluation run (replace the example datasets files and params below as you wish):
python jcs/jcs_main.py --inferrer lstm -lstm_config \<context2vec-model\>.params -testfile datasets/lst_all.preprocessed -testfileconll datasets/lst_all.conll -candidatesfile datasets/lst.gold.candidates -contextmath mult -resultsfile <result-file> --ignoretarget --debug
  • From here, follow the same instructions as in the previous section.

License

Apache 2.0

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published